IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i1p327-357.html
   My bibliography  Save this article

Nonparametric bounds for the survivor function under general dependent truncation

Author

Listed:
  • Jing Qian
  • Rebecca A. Betensky

Abstract

Truncation occurs in cohort studies with complex sampling schemes. When truncation is ignored or incorrectly assumed to be independent of the event time in the observable region, bias can result. We derive completely nonparametric bounds for the survivor function under truncation and censoring; these extend prior nonparametric bounds derived in the absence of truncation. We also define a hazard ratio function that links the unobservable region in which event time is less than truncation time, to the observable region in which event time is greater than truncation time, under dependent truncation. When this function can be bounded, and the probability of truncation is known approximately, it yields narrower bounds than the purely nonparametric bounds. Importantly, our approach targets the true marginal survivor function over its entire support, and is not restricted to the observable region, unlike alternative estimators. We evaluate the methods in simulations and in clinical applications.

Suggested Citation

  • Jing Qian & Rebecca A. Betensky, 2023. "Nonparametric bounds for the survivor function under general dependent truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 327-357, March.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:327-357
    DOI: 10.1111/sjos.12582
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12582
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masaaki Matsuura & Shinto Eguchi, 2005. "Modeling Late Entry Bias in Survival Analysis," Biometrics, The International Biometric Society, vol. 61(2), pages 559-566, June.
    2. Lajmi Lakhal Chaieb & Louis-Paul Rivest & Belkacem Abdous, 2006. "Estimating survival under a dependent truncation," Biometrika, Biometrika Trust, vol. 93(3), pages 655-669, September.
    3. Emura, Takeshi & Wang, Weijing, 2012. "Nonparametric maximum likelihood estimation for dependent truncation data based on copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 171-188.
    4. Austin, Matthew D. & Betensky, Rebecca A., 2014. "Eliminating bias due to censoring in Kendall’s tau estimators for quasi-independence of truncation and failure," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 16-26.
    5. Martin, Emily C. & Betensky, Rebecca A., 2005. "Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 484-492, June.
    6. Takeshi Emura & Yoshihiko Konno, 2012. "Multivariate normal distribution approaches for dependently truncated data," Statistical Papers, Springer, vol. 53(1), pages 133-149, February.
    7. Yu‐Jen Cheng & Mei‐Cheng Wang & Chang‐Yu Tsai, 2019. "Estimations of the joint distribution of failure time and failure type with dependent truncation," Biometrics, The International Biometric Society, vol. 75(2), pages 428-438, June.
    8. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    9. Chiou, Sy Han & Qian, Jing & Mormino, Elizabeth & Betensky, Rebecca A., 2018. "Permutation tests for general dependent truncation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 308-324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Qian & Sy Han Chiou & Rebecca A. Betensky, 2022. "Transformation model based regression with dependently truncated and independently censored data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 395-416, March.
    2. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.
    4. Chiou, Sy Han & Qian, Jing & Mormino, Elizabeth & Betensky, Rebecca A., 2018. "Permutation tests for general dependent truncation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 308-324.
    5. Lior Rennert & Sharon X. Xie, 2022. "Cox regression model under dependent truncation," Biometrics, The International Biometric Society, vol. 78(2), pages 460-473, June.
    6. Takeshi Emura & Chi-Hung Pan, 2020. "Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach," Statistical Papers, Springer, vol. 61(1), pages 479-501, February.
    7. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    8. Bella Vakulenko‐Lagun & Jing Qian & Sy Han Chiou & Nancy Wang & Rebecca A. Betensky, 2022. "Nonparametric estimation of the survival distribution under covariate‐induced dependent truncation," Biometrics, The International Biometric Society, vol. 78(4), pages 1390-1401, December.
    9. Emura, Takeshi & Konno, Yoshihiko, 2012. "A goodness-of-fit test for parametric models based on dependently truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2237-2250.
    10. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    11. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    12. Austin, Matthew D. & Betensky, Rebecca A., 2014. "Eliminating bias due to censoring in Kendall’s tau estimators for quasi-independence of truncation and failure," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 16-26.
    13. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    14. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    15. Ying Wu & Richard J. Cook, 2018. "Variable selection and prediction in biased samples with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 72-93, January.
    16. Emura, Takeshi & Wang, Weijing, 2010. "Testing quasi-independence for truncation data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 223-239, January.
    17. Ghosh Debashis, 2008. "On the Plackett Distribution with Bivariate Censored Data," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-24, May.
    18. Pao-Sheng Shen, 2011. "Testing quasi-independence for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 753-761.
    19. Emura, Takeshi & Wang, Weijing, 2009. "Testing Quasi-independence for Truncation Data," MPRA Paper 58582, University Library of Munich, Germany.
    20. Derumigny Alexis & Fermanian Jean-David, 2019. "On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior," Dependence Modeling, De Gruyter, vol. 7(1), pages 292-321, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:327-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.