IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i1p329-342.html
   My bibliography  Save this article

Exploiting nonsystematic covariate monitoring to broaden the scope of evidence about the causal effects of adaptive treatment strategies

Author

Listed:
  • Noémi Kreif
  • Oleg Sofrygin
  • Julie A. Schmittdiel
  • Alyce S. Adams
  • Richard W. Grant
  • Zheng Zhu
  • Mark J. van der Laan
  • Romain Neugebauer

Abstract

In studies based on electronic health records (EHR), the frequency of covariate monitoring can vary by covariate type, across patients, and over time, which can limit the generalizability of inferences about the effects of adaptive treatment strategies. In addition, monitoring is a health intervention in itself with costs and benefits, and stakeholders may be interested in the effect of monitoring when adopting adaptive treatment strategies. This paper demonstrates how to exploit nonsystematic covariate monitoring in EHR‐based studies to both improve the generalizability of causal inferences and to evaluate the health impact of monitoring when evaluating adaptive treatment strategies. Using a real world, EHR‐based, comparative effectiveness research (CER) study of patients with type II diabetes mellitus, we illustrate how the evaluation of joint dynamic treatment and static monitoring interventions can improve CER evidence and describe two alternate estimation approaches based on inverse probability weighting (IPW). First, we demonstrate the poor performance of the standard estimator of the effects of joint treatment‐monitoring interventions, due to a large decrease in data support and concerns over finite‐sample bias from near‐violations of the positivity assumption (PA) for the monitoring process. Second, we detail an alternate IPW estimator using a no direct effect assumption. We demonstrate that this estimator can improve efficiency but at the potential cost of increase in bias from violations of the PA for the treatment process.

Suggested Citation

  • Noémi Kreif & Oleg Sofrygin & Julie A. Schmittdiel & Alyce S. Adams & Richard W. Grant & Zheng Zhu & Mark J. van der Laan & Romain Neugebauer, 2021. "Exploiting nonsystematic covariate monitoring to broaden the scope of evidence about the causal effects of adaptive treatment strategies," Biometrics, The International Biometric Society, vol. 77(1), pages 329-342, March.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:329-342
    DOI: 10.1111/biom.13271
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13271
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neugebauer Romain & Schmittdiel Julie A. & van der Laan Mark J., 2016. "A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 131-155, May.
    2. Cain Lauren E. & Robins James M. & Lanoy Emilie & Logan Roger & Costagliola Dominique & Hernán Miguel A., 2010. "When to Start Treatment? A Systematic Approach to the Comparison of Dynamic Regimes Using Observational Data," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-26, April.
    3. van der Laan Mark J. & Petersen Maya L, 2007. "Causal Effect Models for Realistic Individualized Treatment and Intention to Treat Rules," The International Journal of Biostatistics, De Gruyter, vol. 3(1), pages 1-55, March.
    4. Neugebauer Romain & Schmittdiel Julie A. & Adams Alyce S. & Grant Richard W. & van der Laan Mark J., 2017. "Identification of the Joint Effect of a Dynamic Treatment Intervention and a Stochastic Monitoring Intervention Under the No Direct Effect Assumption," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-44, March.
    5. Iván Díaz Muñoz & Mark van der Laan, 2012. "Population Intervention Causal Effects Based on Stochastic Interventions," Biometrics, The International Biometric Society, vol. 68(2), pages 541-549, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacqueline A. Mauro & Edward H. Kennedy & Daniel Nagin, 2020. "Instrumental variable methods using dynamic interventions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1523-1551, October.
    2. Lan Wen & Jessica G. Young & James M. Robins & Miguel A. Hernán, 2021. "Parametric g‐formula implementations for causal survival analyses," Biometrics, The International Biometric Society, vol. 77(2), pages 740-753, June.
    3. Jiacheng Wu & Nina Galanter & Susan M. Shortreed & Erica E.M. Moodie, 2022. "Ranking tailoring variables for constructing individualized treatment rules: An application to schizophrenia," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 309-330, March.
    4. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    5. Masahiro Kato & Masatoshi Uehara & Shota Yasui, 2020. "Off-Policy Evaluation and Learning for External Validity under a Covariate Shift," Papers 2002.11642, arXiv.org, revised Oct 2020.
    6. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part II," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-33, February.
    7. Chaffee Paul H. & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequentially Randomized Controlled Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
    8. Rich Benjamin & Moodie Erica E. M. & A. Stephens David, 2016. "Influence Re-weighted G-Estimation," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 157-177, May.
    9. Biernot Peter & Moodie Erica E. M., 2010. "A Comparison of Variable Selection Approaches for Dynamic Treatment Regimes," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, January.
    10. Kristin A. Linn & Eric B. Laber & Leonard A. Stefanski, 2017. "Interactive -Learning for Quantiles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 638-649, April.
    11. Daoud, Adel & Herlitz, Anders & Subramanian, S.V., 2022. "IMF fairness: Calibrating the policies of the International Monetary Fund based on distributive justice," World Development, Elsevier, vol. 157(C).
    12. Cole Manschot & Eric Laber & Marie Davidian, 2023. "Interim monitoring of sequential multiple assignment randomized trials using partial information," Biometrics, The International Biometric Society, vol. 79(4), pages 2881-2894, December.
    13. Alex Chin & Dean Eckles & Johan Ugander, 2022. "Evaluating Stochastic Seeding Strategies in Networks," Management Science, INFORMS, vol. 68(3), pages 1714-1736, March.
    14. Lina M. Montoya & Michael R. Kosorok & Elvin H. Geng & Joshua Schwab & Thomas A. Odeny & Maya L. Petersen, 2023. "Efficient and robust approaches for analysis of sequential multiple assignment randomized trials: Illustration using the ADAPT‐R trial," Biometrics, The International Biometric Society, vol. 79(3), pages 2577-2591, September.
    15. Jincheng Shen & Lu Wang & Jeremy M. G. Taylor, 2017. "Estimation of the optimal regime in treatment of prostate cancer recurrence from observational data using flexible weighting models," Biometrics, The International Biometric Society, vol. 73(2), pages 635-645, June.
    16. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    17. Iván Díaz Muñoz & Mark van der Laan, 2012. "Population Intervention Causal Effects Based on Stochastic Interventions," Biometrics, The International Biometric Society, vol. 68(2), pages 541-549, June.
    18. Hannah H Leslie & Deborah A Karasek & Laura F Harris & Emily Chang & Naila Abdulrahim & May Maloba & Megan J Huchko, 2014. "Cervical Cancer Precursors and Hormonal Contraceptive Use in HIV-Positive Women: Application of a Causal Model and Semi-Parametric Estimation Methods," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.
    19. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    20. Stijn Vansteelandt & Oliver Dukes, 2022. "Assumption‐lean inference for generalised linear model parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 657-685, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:329-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.