Exploiting nonsystematic covariate monitoring to broaden the scope of evidence about the causal effects of adaptive treatment strategies
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13271
Download full text from publisher
References listed on IDEAS
- Cain Lauren E. & Robins James M. & Lanoy Emilie & Logan Roger & Costagliola Dominique & Hernán Miguel A., 2010. "When to Start Treatment? A Systematic Approach to the Comparison of Dynamic Regimes Using Observational Data," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-26, April.
- van der Laan Mark J. & Petersen Maya L, 2007. "Causal Effect Models for Realistic Individualized Treatment and Intention to Treat Rules," The International Journal of Biostatistics, De Gruyter, vol. 3(1), pages 1-55, March.
- Neugebauer Romain & Schmittdiel Julie A. & van der Laan Mark J., 2016. "A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 131-155, May.
- Neugebauer Romain & Schmittdiel Julie A. & Adams Alyce S. & Grant Richard W. & van der Laan Mark J., 2017. "Identification of the Joint Effect of a Dynamic Treatment Intervention and a Stochastic Monitoring Intervention Under the No Direct Effect Assumption," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-44, March.
- Iván Díaz Muñoz & Mark van der Laan, 2012. "Population Intervention Causal Effects Based on Stochastic Interventions," Biometrics, The International Biometric Society, vol. 68(2), pages 541-549, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jacqueline A. Mauro & Edward H. Kennedy & Daniel Nagin, 2020. "Instrumental variable methods using dynamic interventions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1523-1551, October.
- Lan Wen & Jessica G. Young & James M. Robins & Miguel A. Hernán, 2021. "Parametric g‐formula implementations for causal survival analyses," Biometrics, The International Biometric Society, vol. 77(2), pages 740-753, June.
- Jiacheng Wu & Nina Galanter & Susan M. Shortreed & Erica E.M. Moodie, 2022. "Ranking tailoring variables for constructing individualized treatment rules: An application to schizophrenia," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 309-330, March.
- Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
- Rich Benjamin & Moodie Erica E. M. & A. Stephens David, 2016. "Influence Re-weighted G-Estimation," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 157-177, May.
- Biernot Peter & Moodie Erica E. M., 2010. "A Comparison of Variable Selection Approaches for Dynamic Treatment Regimes," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, January.
- Alex Chin & Dean Eckles & Johan Ugander, 2022. "Evaluating Stochastic Seeding Strategies in Networks," Management Science, INFORMS, vol. 68(3), pages 1714-1736, March.
- Jincheng Shen & Lu Wang & Jeremy M. G. Taylor, 2017. "Estimation of the optimal regime in treatment of prostate cancer recurrence from observational data using flexible weighting models," Biometrics, The International Biometric Society, vol. 73(2), pages 635-645, June.
- van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
- Stijn Vansteelandt & Oliver Dukes, 2022. "Assumption‐lean inference for generalised linear model parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 657-685, July.
- Alexander P. Keil & Katie M. O’Brien, 2024. "Considerations and Targeted Approaches to Identifying Bad Actors in Exposure Mixtures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 459-481, July.
- Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
- van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
- Georgia Papadogeorgou & Kosuke Imai & Jason Lyall & Fan Li, 2022. "Causal inference with spatio‐temporal data: Estimating the effects of airstrikes on insurgent violence in Iraq," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1969-1999, November.
- Kim Kwangho & Kennedy Edward H. & Naimi Ashley I., 2021. "Incremental intervention effects in studies with dropout and many timepoints#," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 302-344, January.
- Yasuhiro Hagiwara & Tomohiro Shinozaki & Hirofumi Mukai & Yutaka Matsuyama, 2021. "Sensitivity analysis for subsequent treatments in confirmatory oncology clinical trials: A two‐stage stochastic dynamic treatment regime approach," Biometrics, The International Biometric Society, vol. 77(2), pages 702-714, June.
- Masahiro Kato & Masatoshi Uehara & Shota Yasui, 2020. "Off-Policy Evaluation and Learning for External Validity under a Covariate Shift," Papers 2002.11642, arXiv.org, revised Oct 2020.
- van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part II," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-33, February.
- Chaffee Paul H. & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequentially Randomized Controlled Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
- Kristin A. Linn & Eric B. Laber & Leonard A. Stefanski, 2017. "Interactive -Learning for Quantiles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 638-649, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:329-342. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.