IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v5y2017i1p44n5.html
   My bibliography  Save this article

Identification of the Joint Effect of a Dynamic Treatment Intervention and a Stochastic Monitoring Intervention Under the No Direct Effect Assumption

Author

Listed:
  • Neugebauer Romain

    (Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA)

  • Schmittdiel Julie A.

    (Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA)

  • Adams Alyce S.

    (Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA)

  • Grant Richard W.

    (Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA)

  • van der Laan Mark J.

    (Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA)

Abstract

The management of chronic conditions is characterized by frequent re-assessment of therapy decisions in response to the patient’s changing condition over the course of the illness. Evidence most suitable to inform care thus often concerns the contrast of adaptive treatment strategies that repeatedly personalize treatment decisions over time using the latest accumulated data available from the patient’s previous clinic visits such as laboratory exams (e.g., hemoglobin A1c measurements in diabetes care). The frequency at which such information is monitored implicitly defines the causal estimand that is typically evaluated in an observational or randomized study of such adaptive treatment strategies. Analytic control of monitoring with standard estimation approaches for time-varying interventions can therefore not only improve study generalizibility but also inform the optimal timing of clinical surveillance. Valid inference with these estimators requires the upholding of a positivity assumption that can hinder their applicability. To potentially weaken this requirement for monitoring control, we introduce identifiability results that will facilitate the derivation of alternate estimators of effects defined by general joint treatment and monitoring interventions in the context of time-to-event outcomes. These results are developed based on the nonparametric structural equation modeling framework using a no direct effect assumption originally introduced in a prior paper that inspired this work. The relevance and scope of the results presented here are illustrated with examples in diabetes comparative effectiveness research.

Suggested Citation

  • Neugebauer Romain & Schmittdiel Julie A. & Adams Alyce S. & Grant Richard W. & van der Laan Mark J., 2017. "Identification of the Joint Effect of a Dynamic Treatment Intervention and a Stochastic Monitoring Intervention Under the No Direct Effect Assumption," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-44, March.
  • Handle: RePEc:bpj:causin:v:5:y:2017:i:1:p:44:n:5
    DOI: 10.1515/jci-2016-0015
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2016-0015
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2016-0015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. W. Lavori & R. Dawson, 2000. "A design for testing clinical strategies: biased adaptive within‐subject randomization," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(1), pages 29-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noémi Kreif & Oleg Sofrygin & Julie A. Schmittdiel & Alyce S. Adams & Richard W. Grant & Zheng Zhu & Mark J. van der Laan & Romain Neugebauer, 2021. "Exploiting nonsystematic covariate monitoring to broaden the scope of evidence about the causal effects of adaptive treatment strategies," Biometrics, The International Biometric Society, vol. 77(1), pages 329-342, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    2. Stephens Alisa & Keele Luke & Joffe Marshall, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1-17, September.
    3. Bibhas Chakraborty & Eric B. Laber & Yingqi Zhao, 2013. "Inference for Optimal Dynamic Treatment Regimes Using an Adaptive m-Out-of-n Bootstrap Scheme," Biometrics, The International Biometric Society, vol. 69(3), pages 714-723, September.
    4. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    5. Stephens Alisa & Joffe Marshall & Keele Luke, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1, September.
    6. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    7. Tang, Xinyu & Melguizo, Maria, 2015. "DTR: An R Package for Estimation and Comparison of Survival Outcomes of Dynamic Treatment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i07).
    8. Giorgos Bakoyannis, 2023. "Estimating optimal individualized treatment rules with multistate processes," Biometrics, The International Biometric Society, vol. 79(4), pages 2830-2842, December.
    9. David Benkeser & Keith Horvath & Cathy J. Reback & Joshua Rusow & Michael Hudgens, 2020. "Design and Analysis Considerations for a Sequentially Randomized HIV Prevention Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 446-467, December.
    10. Erica E. M. Moodie & Thomas S. Richardson & David A. Stephens, 2007. "Demystifying Optimal Dynamic Treatment Regimes," Biometrics, The International Biometric Society, vol. 63(2), pages 447-455, June.
    11. Ying Liu & Yuanjia Wang & Donglin Zeng, 2017. "Sequential multiple assignment randomization trials with enrichment design," Biometrics, The International Biometric Society, vol. 73(2), pages 378-390, June.
    12. Kristin A. Linn & Eric B. Laber & Leonard A. Stefanski, 2017. "Interactive -Learning for Quantiles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 638-649, April.
    13. Lina M. Montoya & Michael R. Kosorok & Elvin H. Geng & Joshua Schwab & Thomas A. Odeny & Maya L. Petersen, 2023. "Efficient and robust approaches for analysis of sequential multiple assignment randomized trials: Illustration using the ADAPT‐R trial," Biometrics, The International Biometric Society, vol. 79(3), pages 2577-2591, September.
    14. Armando Turchetta & Erica E. M. Moodie & David A. Stephens & Sylvie D. Lambert, 2023. "Bayesian sample size calculations for comparing two strategies in SMART studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2489-2502, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:5:y:2017:i:1:p:44:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.