Efficient and robust approaches for analysis of sequential multiple assignment randomized trials: Illustration using the ADAPT‐R trial
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13808
Download full text from publisher
References listed on IDEAS
- P. W. Lavori & R. Dawson, 2000. "A design for testing clinical strategies: biased adaptive within‐subject randomization," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(1), pages 29-38.
- David Benkeser & Iván Díaz & Alex Luedtke & Jodi Segal & Daniel Scharfstein & Michael Rosenblum, 2021. "Improving precision and power in randomized trials for COVID‐19 treatments using covariate adjustment, for binary, ordinal, and time‐to‐event outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1467-1481, December.
- David Benkeser & Iván Díaz & Alex Luedtke & Jodi Segal & Daniel Scharfstein & Michael Rosenblum, 2021. "Rejoinder: Improving precision and power in randomized trials for COVID‐19 treatments using covariate adjustment, for binary, ordinal, and time‐to‐event outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1492-1494, December.
- van der Laan Mark J. & Petersen Maya L, 2007. "Causal Effect Models for Realistic Individualized Treatment and Intention to Treat Rules," The International Journal of Biostatistics, De Gruyter, vol. 3(1), pages 1-55, March.
- David Benkeser & Keith Horvath & Cathy J. Reback & Joshua Rusow & Michael Hudgens, 2020. "Design and Analysis Considerations for a Sequentially Randomized HIV Prevention Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 446-467, December.
- Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
- van der Laan Mark J. & Gruber Susan, 2012. "Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-41, May.
- Gruber Susan & van der Laan Mark J., 2012. "Targeted Minimum Loss Based Estimation of a Causal Effect on an Outcome with Known Conditional Bounds," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-18, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- David Benkeser & Keith Horvath & Cathy J. Reback & Joshua Rusow & Michael Hudgens, 2020. "Design and Analysis Considerations for a Sequentially Randomized HIV Prevention Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 446-467, December.
- Philipp Baumann & Enzo Rossi & Michael Schomaker, 2022.
"Estimating the effect of central bank independence on inflation using longitudinal targeted maximum likelihood estimation,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Machine learning in central banking, volume 57,
Bank for International Settlements.
- Baumann Philipp F. M. & Schomaker Michael & Rossi Enzo, 2021. "Estimating the effect of central bank independence on inflation using longitudinal targeted maximum likelihood estimation," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 109-146, January.
- Philipp F. M. Baumann & Michael Schomaker & Enzo Rossi, 2020. "Estimating the Effect of Central Bank Independence on Inflation Using Longitudinal Targeted Maximum Likelihood Estimation," Papers 2003.02208, arXiv.org, revised May 2021.
- Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
- Audrey Renson & Michael G. Hudgens & Alexander P. Keil & Paul N. Zivich & Allison E. Aiello, 2023. "Identifying and estimating effects of sustained interventions under parallel trends assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 2998-3009, December.
- Matthew Blackwell & Anton Strezhnev, 2022. "Telescope matching for reducing model dependence in the estimation of the effects of time‐varying treatments: An application to negative advertising," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 377-399, January.
- Kara E. Rudolph & Jonathan Levy & Mark J. van der Laan, 2021. "Transporting stochastic direct and indirect effects to new populations," Biometrics, The International Biometric Society, vol. 77(1), pages 197-211, March.
- Mireille E. Schnitzer & Erica E.M. Moodie & Mark J. van der Laan & Robert W. Platt & Marina B. Klein, 2014. "Modeling the impact of hepatitis C viral clearance on end-stage liver disease in an HIV co-infected cohort with targeted maximum likelihood estimation," Biometrics, The International Biometric Society, vol. 70(1), pages 144-152, March.
- Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022.
"Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
- Hugo Bodory & Martin Huber & Luk'av{s} Laff'ers, 2020. "Evaluating (weighted) dynamic treatment effects by double machine learning," Papers 2012.00370, arXiv.org, revised Jun 2021.
- Kristin A. Linn & Eric B. Laber & Leonard A. Stefanski, 2017. "Interactive -Learning for Quantiles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 638-649, April.
- van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
- Lan Wen & Miguel A. Hernán & James M. Robins, 2022. "Multiply robust estimators of causal effects for survival outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1304-1328, September.
- Sapp Stephanie & van der Laan Mark J. & Page Kimberly, 2014. "Targeted Estimation of Binary Variable Importance Measures with Interval-Censored Outcomes," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 77-97, May.
- Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Hamidou Jawara, 2020. "Access to savings and household welfare evidence from a household survey in The Gambia," African Development Review, African Development Bank, vol. 32(2), pages 138-149, June.
- Wei, Kecheng & Qin, Guoyou & Zhang, Jiajia & Sui, Xuemei, 2022. "Doubly robust estimation in causal inference with missing outcomes: With an application to the Aerobics Center Longitudinal Study," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Bryan S. Graham & Keisuke Hirano, 2011. "Robustness to Parametric Assumptions in Missing Data Models," American Economic Review, American Economic Association, vol. 101(3), pages 538-543, May.
- Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2577-2591. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.