A Bayesian model with application for adaptive platform trials having temporal changes
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13680
Download full text from publisher
References listed on IDEAS
- Haitao Pan & Ying Yuan & Jielai Xia, 2017. "A calibrated power prior approach to borrow information from historical data with application to biosimilar clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 979-996, November.
- Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.
- Wenlin Yuan & Ming-Hui Chen & John Zhong, 2022. "Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 197-215, July.
- Yimei Li & Ying Yuan, 2020. "PA‐CRM: A continuous reassessment method for pediatric phase I oncology trials with concurrent adult trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1364-1373, December.
- Chen Li & Haitao Pan, 2020. "A phase I dose-finding design with incorporation of historical information and adaptive shrinking boundaries," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
- Chenghao Chu & Bingming Yi, 2021. "Dynamic historical data borrowing using weighted average," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1259-1280, November.
- Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
- Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
- Sidi Wang & Kelley M. Kidwell & Satrajit Roychoudhury, 2023. "Dynamic enrichment of Bayesian small‐sample, sequential, multiple assignment randomized trial design using natural history data: a case study from Duchenne muscular dystrophy," Biometrics, The International Biometric Society, vol. 79(4), pages 3612-3623, December.
- Thomas A. Murray & Brian P. Hobbs & Theodore C. Lystig & Bradley P. Carlin, 2014. "Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data," Biometrics, The International Biometric Society, vol. 70(1), pages 185-191, March.
- Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
- Hui Quan & Xiaofei Chen & Xun Chen & Xiaodong Luo, 2022. "Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 139-157, April.
- Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
- Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
- Jing Zhang & Ainsley Helling & A. John Bailer, 2024. "Comparing Methods for Determining Power Priors Based on Different Congruence Measures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 516-535, September.
- Stavros Nikolakopoulos & Ingeborg van der Tweel & Kit C. B. Roes, 2018. "Dynamic borrowing through empirical power priors that control type I error," Biometrics, The International Biometric Society, vol. 74(3), pages 874-880, September.
- Andrea Arfè & Brian Alexander & Lorenzo Trippa, 2021. "Optimality of testing procedures for survival data in the nonproportional hazards setting," Biometrics, The International Biometric Society, vol. 77(2), pages 587-598, June.
- Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
- Yu-Fang Chien & Haiming Zhou & Timothy Hanson & Theodore Lystig, 2023. "Informative g -Priors for Mixed Models," Stats, MDPI, vol. 6(1), pages 1-23, January.
- Jing Zhang & Yunzhi Kong & A. John Bailer & Zheng Zhu & Byran Smucker, 2022. "Incorporating Historical Data When Determining Sample Size Requirements for Aquatic Toxicity Experiments," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 544-561, September.
- Lanju Zhang & Zailong Wang & Li Wang & Lu Cui & Jeremy Sokolove & Ivan Chan, 2022. "A Simple Approach to Incorporating Historical Control Data in Clinical Trial Design and Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 216-236, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1446-1458. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.