IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i3p1065-1071.html
   My bibliography  Save this article

Motivating sample sizes in adaptive Phase I trials via Bayesian posterior credible intervals

Author

Listed:
  • Thomas M. Braun

Abstract

In contrast with typical Phase III clinical trials, there is little existing methodology for determining the appropriate numbers of patients to enroll in adaptive Phase I trials. And, as stated by Dennis Lindley in a more general context, “[t]he simple practical question of ‘What size of sample should I take’ is often posed to a statistician, and it is a question that is embarrassingly difficult to answer.” Historically, simulation has been the primary option for determining sample sizes for adaptive Phase I trials, and although useful, can be problematic and time‐consuming when a sample size is needed relatively quickly. We propose a computationally fast and simple approach that uses Beta distributions to approximate the posterior distributions of DLT rates of each dose and determines an appropriate sample size through posterior coverage rates. We provide sample sizes produced by our methods for a vast number of realistic Phase I trial settings and demonstrate that our sample sizes are generally larger than those produced by a competing approach that is based upon the nonparametric optimal design.

Suggested Citation

  • Thomas M. Braun, 2018. "Motivating sample sizes in adaptive Phase I trials via Bayesian posterior credible intervals," Biometrics, The International Biometric Society, vol. 74(3), pages 1065-1071, September.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:1065-1071
    DOI: 10.1111/biom.12872
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12872
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying Kuen Cheung & Rick Chappell, 2000. "Sequential Designs for Phase I Clinical Trials with Late-Onset Toxicities," Biometrics, The International Biometric Society, vol. 56(4), pages 1177-1182, December.
    2. Guosheng Yin & Ying Yuan, 2009. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 211-224, May.
    3. Yuan, Ying & Yin, Guosheng, 2011. "Robust EM Continual Reassessment Method in Oncology Dose Finding," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 818-831.
    4. Yin, Guosheng & Yuan, Ying, 2009. "Bayesian Model Averaging Continual Reassessment Method in Phase I Clinical Trials," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 954-968.
    5. Ying Kuen Cheung & Rick Chappell, 2002. "A Simple Technique to Evaluate Model Sensitivity in the Continual Reassessment Method," Biometrics, The International Biometric Society, vol. 58(3), pages 671-674, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifei Zhang & Sha Cao & Chi Zhang & Ick Hoon Jin & Yong Zang, 2021. "A Bayesian adaptive phase I/II clinical trial design with late‐onset competing risk outcomes," Biometrics, The International Biometric Society, vol. 77(3), pages 796-808, September.
    2. Chunyan Cai & Ying Yuan & Yuan Ji, 2014. "A Bayesian dose finding design for oncology clinical trials of combinational biological agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 159-173, January.
    3. Anastasia Ivanova & Se Hee Kim, 2009. "Dose Finding for Continuous and Ordinal Outcomes with a Monotone Objective Function: A Unified Approach," Biometrics, The International Biometric Society, vol. 65(1), pages 307-315, March.
    4. Tianjian Zhou & Wentian Guo & Yuan Ji, 2020. "PoD-TPI: Probability-of-Decision Toxicity Probability Interval Design to Accelerate Phase I Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 124-145, July.
    5. Erica Brittain & Dean Follmann & Song Yang, 2008. "Dynamic Comparison of Kaplan–Meier Proportions: Monitoring a Randomized Clinical Trial with a Long-Term Binary Endpoint," Biometrics, The International Biometric Society, vol. 64(1), pages 189-197, March.
    6. Azriel, David, 2014. "Optimal sequential designs in phase I studies," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 288-297.
    7. Changying A. Liu & Thomas M. Braun, 2009. "Parametric non‐mixture cure models for schedule finding of therapeutic agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 225-236, May.
    8. B. Nebiyou Bekele & Yisheng Li & Yuan Ji, 2010. "Risk-Group-Specific Dose Finding Based on an Average Toxicity Score," Biometrics, The International Biometric Society, vol. 66(2), pages 541-548, June.
    9. Nadine Houede & Peter F. Thall & Hoang Nguyen & Xavier Paoletti & Andrew Kramar, 2010. "Utility-Based Optimization of Combination Therapy Using Ordinal Toxicity and Efficacy in Phase I/II Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 532-540, June.
    10. Koichi Hashizume & Jun Tshuchida & Takashi Sozu, 2022. "Flexible use of copula‐type model for dose‐finding in drug combination clinical trials," Biometrics, The International Biometric Society, vol. 78(4), pages 1651-1661, December.
    11. Yimei Li & Ying Yuan, 2020. "PA‐CRM: A continuous reassessment method for pediatric phase I oncology trials with concurrent adult trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1364-1373, December.
    12. Oron Assaf P. & Azriel David & Hoff Peter D., 2011. "Dose-Finding Designs: The Role of Convergence Properties," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-17, October.
    13. Ying Kuen Cheung & Peter F. Thall, 2002. "Monitoring the Rates of Composite Events with Censored Data in Phase II Clinical Trials," Biometrics, The International Biometric Society, vol. 58(1), pages 89-97, March.
    14. Beibei Guo & Suyu Liu, 2018. "Optimal Benchmark for Evaluating Drug-Combination Dose-Finding Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 184-201, April.
    15. Alessandra Giovagnoli, 2021. "The Bayesian Design of Adaptive Clinical Trials," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    16. Ying Kuen Cheung, 2002. "On the Use of Nonparametric Curves in Phase I Trials with Low Toxicity Tolerance," Biometrics, The International Biometric Society, vol. 58(1), pages 237-240, March.
    17. Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
    18. Beibei Guo & Ying Yuan, 2017. "Bayesian Phase I/II Biomarker-Based Dose Finding for Precision Medicine With Molecularly Targeted Agents," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 508-520, April.
    19. Sweeting, Michael & Mander, Adrian & Sabin, Tony, 2013. "bcrm: Bayesian Continual Reassessment Method Designs for Phase I Dose-Finding Trials," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i13).
    20. Yuan Ji & B. Nebiyou Bekele, 2009. "Adaptive Randomization for Multiarm Comparative Clinical Trials Based on Joint Efficacy/Toxicity Outcomes," Biometrics, The International Biometric Society, vol. 65(3), pages 876-884, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:1065-1071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.