IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p496-507.html
   My bibliography  Save this article

Sequential adaptive variables and subject selection for GEE methods

Author

Listed:
  • Zimu Chen
  • Zhanfeng Wang
  • Yuan‐chin Ivan Chang

Abstract

Modeling correlated or highly stratified multiple‐response data is a common data analysis task in many applications, such as those in large epidemiological studies or multisite cohort studies. The generalized estimating equations method is a popular statistical method used to analyze these kinds of data, because it can manage many types of unmeasured dependence among outcomes. Collecting large amounts of highly stratified or correlated response data is time‐consuming; thus, the use of a more aggressive sampling strategy that can accelerate this process—such as the active‐learning methods found in the machine‐learning literature—will always be beneficial. In this study, we integrate adaptive sampling and variable selection features into a sequential procedure for modeling correlated response data. Besides reporting the statistical properties of the proposed procedure, we also use both synthesized and real data sets to demonstrate the usefulness of our method.

Suggested Citation

  • Zimu Chen & Zhanfeng Wang & Yuan‐chin Ivan Chang, 2020. "Sequential adaptive variables and subject selection for GEE methods," Biometrics, The International Biometric Society, vol. 76(2), pages 496-507, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:496-507
    DOI: 10.1111/biom.13160
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13160
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhanfeng Wang & Yuan-chin Chang, 2013. "Sequential estimate for linear regression models with uncertain number of effective variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 949-978, October.
    2. Lai, T. L. & Robbins, Herbert & Wei, C. Z., 1979. "Strong consistency of least squares estimates in multiple regression II," Journal of Multivariate Analysis, Elsevier, vol. 9(3), pages 343-361, September.
    3. Wei Pan, 2001. "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 57(1), pages 120-125, March.
    4. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    5. Oman, Samuel D., 2009. "Easily simulated multivariate binary distributions with given positive and negative correlations," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 999-1005, February.
    6. Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
    7. Cuicui Lu & Weining Wang & Jeffrey M. Wooldridge, 2018. "Using generalized estimating equations to estimate nonlinear models with spatial data," Papers 1810.05855, arXiv.org.
    8. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    9. Gregory Vaughan & Robert Aseltine & Kun Chen & Jun Yan, 2017. "Stagewise generalized estimating equations with grouped variables," Biometrics, The International Biometric Society, vol. 73(4), pages 1332-1342, December.
    10. Yuan-chin Chang & Hung-Yi Lu, 2010. "Online Calibration Via Variable Length Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 140-157, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo-Shiang Ke & Yuan-chin Ivan Chang, 2021. "A Model-Free Subject Selection Method for Active Learning Classification Procedures," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 544-555, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    2. Zhang, Shen & Zhao, Peixin & Li, Gaorong & Xu, Wangli, 2019. "Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 37-52.
    3. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    4. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
    5. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    6. Geronimi, J. & Saporta, G., 2017. "Variable selection for multiply-imputed data with penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 103-114.
    7. Zhang, Weiwei & Li, Gaorong & Xue, Liugen, 2011. "Profile inference on partially linear varying-coefficient errors-in-variables models under restricted condition," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3027-3040, November.
    8. Lan Wang & Jianhui Zhou & Annie Qu, 2012. "Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 68(2), pages 353-360, June.
    9. Kangning Wang & Mengjie Hao & Xiaofei Sun, 2021. "Robust and efficient estimating equations for longitudinal data partial linear models and its applications," Statistical Papers, Springer, vol. 62(5), pages 2147-2168, October.
    10. Majmudar, Ishani Kartik & Mihalopoulos, Cathy & Abimanyi-Ochom, Julie & Mohebbi, Mohammadreza & Engel, Lidia, 2024. "The association between loneliness with health service use and quality of life among informal carers in Australia," Social Science & Medicine, Elsevier, vol. 348(C).
    11. Lee, Kyeongeun & Lee, Young K. & Park, Byeong U. & Yang, Seong J., 2018. "Time-dynamic varying coefficient models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 50-65.
    12. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    13. Wei Pan, 2001. "Model Selection in Estimating Equations," Biometrics, The International Biometric Society, vol. 57(2), pages 529-534, June.
    14. Otto, Philipp E. & Bolle, Friedel, 2015. "Exploiting one’s power with a guilty conscience: An experimental investigation of self-serving biases," Journal of Economic Psychology, Elsevier, vol. 51(C), pages 79-89.
    15. Mahmood Ul Hassan & Frank Miller, 2019. "Optimal Item Calibration for Computerized Achievement Tests," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1101-1128, December.
    16. Lita da Silva, João, 2014. "Some strong consistency results in stochastic regression," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 220-226.
    17. Sara Evans-Lacko & Martin Knapp, 2014. "Importance of Social and Cultural Factors for Attitudes, Disclosure and Time off Work for Depression: Findings from a Seven Country European Study on Depression in the Workplace," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    18. Zhang, Shulin & Song, Peter X.-K. & Shi, Daimin & Zhou, Qian M., 2012. "Information ratio test for model misspecification on parametric structures in stochastic diffusion models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3975-3987.
    19. Sabina B. Gesell & Shari L. Barkin & Edward H. Ip & Santiago J. Saldana & Evan C. Sommer & Thomas W. Valente & Kayla de la Haye, 2021. "Leveraging Emergent Social Networks to Reduce Sedentary Behavior in Low-Income Parents With Preschool-Aged Children," SAGE Open, , vol. 11(3), pages 21582440211, July.
    20. Gregory N. Price & Juliet U. Elu, 2014. "Does regional currency integration ameliorate global macroeconomic shocks in sub-Saharan Africa? The case of the 2008-2009 global financial crisis," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 41(5), pages 737-750, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:496-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.