IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v61y2013icp174-186.html
   My bibliography  Save this article

Automatic variable selection for longitudinal generalized linear models

Author

Listed:
  • Li, Gaorong
  • Lian, Heng
  • Feng, Sanying
  • Zhu, Lixing

Abstract

We consider the problem of variable selection for the generalized linear models (GLMs) with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold generalized estimating equations (SGEE). The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero, and simultaneously estimates the nonzero regression coefficients by solving the SGEE. The proposed method shares some of the desired features of existing variable selection methods: the resulting estimator enjoys the oracle property; the proposed procedure avoids the convex optimization problem and is flexible and easy to implement. Moreover, we propose a penalized weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies are carried out to assess the performance of SGEE, and a real dataset is analyzed for further illustration.

Suggested Citation

  • Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
  • Handle: RePEc:eee:csdana:v:61:y:2013:i:c:p:174-186
    DOI: 10.1016/j.csda.2012.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312004495
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Eva Cantoni & Joanna Mills Flemming & Elvezio Ronchetti, 2005. "Variable Selection for Marginal Longitudinal Generalized Linear Models," Biometrics, The International Biometric Society, vol. 61(2), pages 507-514, June.
    3. Wei Pan, 2001. "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 57(1), pages 120-125, March.
    4. Lan Wang & Jianhui Zhou & Annie Qu, 2012. "Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 68(2), pages 353-360, June.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Oman, Samuel D., 2009. "Easily simulated multivariate binary distributions with given positive and negative correlations," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 999-1005, February.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Masao Ueki, 2009. "A note on automatic variable selection using smooth-threshold estimating equations," Biometrika, Biometrika Trust, vol. 96(4), pages 1005-1011.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    10. Jeng‐Min Chiou & Hans‐Georg Müller, 2005. "Estimated estimating equations: semiparametric inference for clustered and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 531-553, September.
    11. Lan Wang & Annie Qu, 2009. "Consistent model selection and data‐driven smooth tests for longitudinal data in the estimating equations approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 177-190, January.
    12. Wenjiang J. Fu, 2003. "Penalized Estimating Equations," Biometrics, The International Biometric Society, vol. 59(1), pages 126-132, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    2. Zimu Chen & Zhanfeng Wang & Yuan‐chin Ivan Chang, 2020. "Sequential adaptive variables and subject selection for GEE methods," Biometrics, The International Biometric Society, vol. 76(2), pages 496-507, June.
    3. Geronimi, J. & Saporta, G., 2017. "Variable selection for multiply-imputed data with penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 103-114.
    4. Tian, Ruiqin & Xue, Liugen & Xu, Dengke, 2016. "Automatic variable selection for varying coefficient models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 84-90.
    5. Kangning Wang & Mengjie Hao & Xiaofei Sun, 2021. "Robust and efficient estimating equations for longitudinal data partial linear models and its applications," Statistical Papers, Springer, vol. 62(5), pages 2147-2168, October.
    6. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    7. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
    8. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yali & Qin, Guoyou & Zhu, Zhongyi, 2012. "Variable selection in robust regression models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 156-167.
    2. Geronimi, J. & Saporta, G., 2017. "Variable selection for multiply-imputed data with penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 103-114.
    3. Blommaert, A. & Hens, N. & Beutels, Ph., 2014. "Data mining for longitudinal data under multicollinearity and time dependence using penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 667-680.
    4. Yang, Yuan & McMahan, Christopher S. & Wang, Yu-Bo & Ouyang, Yuyuan, 2024. "Estimation of l0 norm penalized models: A statistical treatment," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    5. Jie Ding & Vahid Tarokh & Yuhong Yang, 2018. "Model Selection Techniques -- An Overview," Papers 1810.09583, arXiv.org.
    6. Qin, Yichen & Wang, Linna & Li, Yang & Li, Rong, 2023. "Visualization and assessment of model selection uncertainty," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    7. Wenning Feng & Abdhi Sarkar & Chae Young Lim & Tapabrata Maiti, 2016. "Variable selection for binary spatial regression: Penalized quasi‐likelihood approach," Biometrics, The International Biometric Society, vol. 72(4), pages 1164-1172, December.
    8. Lan Wang & Jianhui Zhou & Annie Qu, 2012. "Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 68(2), pages 353-360, June.
    9. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    10. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    11. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    12. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
    13. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    14. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    15. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    16. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    17. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    18. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    19. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    20. Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:61:y:2013:i:c:p:174-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.