IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v75y2010i1p140-157.html
   My bibliography  Save this article

Online Calibration Via Variable Length Computerized Adaptive Testing

Author

Listed:
  • Yuan-chin Chang
  • Hung-Yi Lu

Abstract

No abstract is available for this item.

Suggested Citation

  • Yuan-chin Chang & Hung-Yi Lu, 2010. "Online Calibration Via Variable Length Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 140-157, March.
  • Handle: RePEc:spr:psycho:v:75:y:2010:i:1:p:140-157
    DOI: 10.1007/s11336-009-9133-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-009-9133-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-009-9133-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martijn Berger, 1992. "Sequential sampling designs for the two-parameter item response theory model," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 521-538, December.
    2. Martijn Berger & C. Joy King & Weng Wong, 2000. "Minimax d-optimal designs for item response theory models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 377-390, September.
    3. Douglas Jones & Zhiying Jin, 1994. "Optimal sequential designs for on-line item estimation," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 59-75, March.
    4. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    5. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    6. Chang, Yuan-chin Ivan, 1999. "Strong consistency of maximum quasi-likelihood estimate in generalized linear models via a last time," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 237-246, November.
    7. Li, Tong & Hsiao, Cheng, 2004. "Robust estimation of generalized linear models with measurement errors," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 51-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinhong He & Ping Chen, 2020. "Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 35-55, March.
    2. Zimu Chen & Zhanfeng Wang & Yuan‐chin Ivan Chang, 2020. "Sequential adaptive variables and subject selection for GEE methods," Biometrics, The International Biometric Society, vol. 76(2), pages 496-507, June.
    3. Ping Chen, 2017. "A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 559-590, October.
    4. Mahmood Ul Hassan & Frank Miller, 2019. "Optimal Item Calibration for Computerized Achievement Tests," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1101-1128, December.
    5. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.
    6. Ping Chen & Tao Xin & Chun Wang & Hua-Hua Chang, 2012. "Online Calibration Methods for the DINA Model with Independent Attributes in CD-CAT," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 201-222, April.
    7. Wim Linden & Hao Ren, 2015. "Optimal Bayesian Adaptive Design for Test-Item Calibration," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 263-288, June.
    8. Ul Hassan, Mahmood & Miller, Frank, 2021. "An exchange algorithm for optimal calibration of items in computerized achievement tests," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmood Ul Hassan & Frank Miller, 2019. "Optimal Item Calibration for Computerized Achievement Tests," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1101-1128, December.
    2. Wim Linden & Hao Ren, 2015. "Optimal Bayesian Adaptive Design for Test-Item Calibration," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 263-288, June.
    3. Ul Hassan, Mahmood & Miller, Frank, 2021. "An exchange algorithm for optimal calibration of items in computerized achievement tests," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Yinhong He & Ping Chen, 2020. "Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 35-55, March.
    5. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.
    6. Daisuke Kurisu & Taisuke Otsu, 2019. "On the uniform convergence of deconvolution estimators from repeated measurements," STICERD - Econometrics Paper Series 604, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    7. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    8. Yingyao Hu & Zhongjian Lin, 2018. "Misclassification and the hidden silent rivalry," CeMMAP working papers CWP12/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Yuan-chin Chang, 2011. "Sequential estimation in generalized linear models when covariates are subject to errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(1), pages 93-120, January.
    10. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Hao Ren & Wim J. van der Linden & Qi Diao, 2017. "Continuous Online Item Calibration: Parameter Recovery and Item Utilization," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 498-522, June.
    12. Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
    13. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.
    14. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On the uniform convergence of deconvolution estimators from repeated measurements," LSE Research Online Documents on Economics 107533, London School of Economics and Political Science, LSE Library.
    15. Wing-Keung Wong & Guorui Bian, 2005. "Robust Estimation of Multiple Regression Model with Non-normal Error: Symmetric Distribution," Monash Economics Working Papers 09/05, Monash University, Department of Economics.
    16. GUORUI BIAN & MICHAEL McALEER & WING-KEUNG WONG, 2013. "Robust Estimation And Forecasting Of The Capital Asset Pricing Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-18.
    17. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
    18. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    19. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    20. Carolina Navarro & Luis Ayala & José Labeaga, 2010. "Housing deprivation and health status: evidence from Spain," Empirical Economics, Springer, vol. 38(3), pages 555-582, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:75:y:2010:i:1:p:140-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.