IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v67y2005i4p573-587.html
   My bibliography  Save this article

On nonparametric maximum likelihood estimation with interval censoring and left truncation

Author

Listed:
  • Michael G. Hudgens

Abstract

Summary. A graph theoretical approach is employed to describe the support set of the nonparametric maximum likelihood estimator for the cumulative distribution function given interval‐censored and left‐truncated data. A necessary and sufficient condition for the existence of a nonparametric maximum likelihood estimator is then derived. Two previously analysed data sets are revisited.

Suggested Citation

  • Michael G. Hudgens, 2005. "On nonparametric maximum likelihood estimation with interval censoring and left truncation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 573-587, September.
  • Handle: RePEc:bla:jorssb:v:67:y:2005:i:4:p:573-587
    DOI: 10.1111/j.1467-9868.2005.00516.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2005.00516.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2005.00516.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pao-sheng Shen, 2013. "Regression analysis of interval censored and doubly truncated data with linear transformation models," Computational Statistics, Springer, vol. 28(2), pages 581-596, April.
    2. Pao-Sheng Shen, 2020. "Nonparametric estimators of survival function under the mixed case interval-censored model with left truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 624-637, July.
    3. Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
    4. Pao-sheng Shen, 2022. "Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring," Computational Statistics, Springer, vol. 37(1), pages 29-42, March.
    5. Ana Belén Ramos-Guajardo, 2022. "A hierarchical clustering method for random intervals based on a similarity measure," Computational Statistics, Springer, vol. 37(1), pages 229-261, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:67:y:2005:i:4:p:573-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.