Regression analysis of interval-censored failure time data with time-dependent covariates
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2019.106848
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- C. Y. Wang & Naisyin Wang & Suojin Wang, 2000. "Regression Analysis When Covariates Are Regression Parameters of a Random Effects Model for Observed Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 56(2), pages 487-495, June.
- Chen, Chyong-Mei & Shen, Pao-sheng & Tseng, Yi-Kuan, 2018. "Semiparametric transformation joint models for longitudinal covariates and interval-censored failure time," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 116-127.
- Robert M. Elashoff & Gang Li & Ning Li, 2008. "A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types," Biometrics, The International Biometric Society, vol. 64(3), pages 762-771, September.
- Donglin Zeng & Lu Mao & D. Y. Lin, 2016. "Maximum likelihood estimation for semiparametric transformation models with interval-censored data," Biometrika, Biometrika Trust, vol. 103(2), pages 253-271.
- Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
- Jimin Ding & Jane-Ling Wang, 2008. "Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data," Biometrics, The International Biometric Society, vol. 64(2), pages 546-556, June.
- Xianzheng Huang & Leonard A. Stefanski & Marie Davidian, 2009. "Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process," Biometrics, The International Biometric Society, vol. 65(3), pages 719-727, September.
- Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
- Paul S. Albert & Dean A. Follmann, 2000. "Modeling Repeated Count Data Subject to Informative Dropout," Biometrics, The International Biometric Society, vol. 56(3), pages 667-677, September.
- Yi-Kuan Tseng & Fushing Hsieh & Jane-Ling Wang, 2005. "Joint modelling of accelerated failure time and longitudinal data," Biometrika, Biometrika Trust, vol. 92(3), pages 587-603, September.
- Lianming Wang & Christopher S. McMahan & Michael G. Hudgens & Zaina P. Qureshi, 2016. "A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data," Biometrics, The International Biometric Society, vol. 72(1), pages 222-231, March.
- Wang Y. & Taylor J. M. G., 2001. "Jointly Modeling Longitudinal and Event Time Data With Application to Acquired Immunodeficiency Syndrome," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 895-905, September.
- Jane Xu & Scott L. Zeger, 2001. "Joint analysis of longitudinal data comprising repeated measures and times to events," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 375-387.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kang, Kai & Song, Xinyuan, 2022. "Consistent estimation of a joint model for multivariate longitudinal and survival data with latent variables," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
- Jaeun Choi & Jianwen Cai & Donglin Zeng, 2017. "Penalized Likelihood Approach for Simultaneous Analysis of Survival Time and Binary Longitudinal Outcome," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 190-216, November.
- repec:jss:jstsof:35:i09 is not listed on IDEAS
- Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
- Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
- Y. K. Tseng & Y. R. Su & M. Mao & J. L. Wang, 2015. "An extended hazard model with longitudinal covariates," Biometrika, Biometrika Trust, vol. 102(1), pages 135-150.
- Chen, Chyong-Mei & Shen, Pao-sheng & Tseng, Yi-Kuan, 2018. "Semiparametric transformation joint models for longitudinal covariates and interval-censored failure time," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 116-127.
- Yih‐Huei Huang & Wen‐Han Hwang & Fei‐Yin Chen, 2016. "Improving efficiency using the Rao–Blackwell theorem in corrected and conditional score estimation methods for joint models," Biometrics, The International Biometric Society, vol. 72(4), pages 1136-1144, December.
- Wei Yang & Dawei Xie & Qiang Pan & Harold I. Feldman & Wensheng Guo, 2017. "Joint Modeling of Repeated Measures and Competing Failure Events in a Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 504-524, December.
- Erning Li & Naisyin Wang & Nae-Yuh Wang, 2007. "Joint Models for a Primary Endpoint and Multiple Longitudinal Covariate Processes," Biometrics, The International Biometric Society, vol. 63(4), pages 1068-1078, December.
- Xiao Song & C. Y. Wang, 2008. "Semiparametric Approaches for Joint Modeling of Longitudinal and Survival Data with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 64(2), pages 557-566, June.
- Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
- Robert M. Elashoff & Gang Li & Ning Li, 2008. "A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types," Biometrics, The International Biometric Society, vol. 64(3), pages 762-771, September.
- Shuwei Li & Limin Peng, 2023. "Instrumental variable estimation of complier causal treatment effect with interval‐censored data," Biometrics, The International Biometric Society, vol. 79(1), pages 253-263, March.
- Liuquan Sun & Shuwei Li & Lianming Wang & Xinyuan Song & Xuemei Sui, 2022. "Simultaneous variable selection in regression analysis of multivariate interval‐censored data," Biometrics, The International Biometric Society, vol. 78(4), pages 1402-1413, December.
- Atanu B & Gajendra V & Jesna J & Ramesh V, 2017. "Multiple Imputations for Determining an Optimum Biological Dose of a Metronomic Chemotherapy," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 3(5), pages 129-140, October.
- Kang, Kai & Song, Xinyuan, 2022. "Consistent estimation of a joint model for multivariate longitudinal and survival data with latent variables," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
- Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
- Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Yanqing Sun & Qingning Zhou & Peter B. Gilbert, 2023. "Analysis of the Cox Model with Longitudinal Covariates with Measurement Errors and Partly Interval Censored Failure Times, with Application to an AIDS Clinical Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 430-454, July.
More about this item
Keywords
Interval censoring; Joint analysis; MCEM algorithm; Time-dependent covariate;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302038. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.