IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v22y2010i2p133-147.html
   My bibliography  Save this article

Nonparametric estimation for time-varying transformation models with longitudinal data

Author

Listed:
  • Colin Wu
  • Xin Tian
  • Jarvis Yu

Abstract

Regression methods for longitudinal analyses have traditionally focused on conditional-mean-based models. In many situations, the relevant scientific questions could be better studied by modelling the conditional distributions of the outcome variables as a function of time and other covariates. In this paper, we propose a class of time-varying transformation models for modelling the cumulative distribution function of a response variable conditioning on a set of covariates, and develop a two-step smoothing method for estimating the time-varying parameters. Applications and finite sample properties of our models and smoothing estimators are demonstrated through a cohort study of childhood obesity and cardiovascular risk factors, and a simulation study. Theoretical properties are developed for the two-step local polynomial estimators. Our approach provides a useful statistical tool in longitudinal analysis when the conditional-mean-based methods are inappropriate.

Suggested Citation

  • Colin Wu & Xin Tian & Jarvis Yu, 2010. "Nonparametric estimation for time-varying transformation models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 133-147.
  • Handle: RePEc:taf:gnstxx:v:22:y:2010:i:2:p:133-147
    DOI: 10.1080/10485250903160988
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250903160988
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250903160988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Lu & Anastasios A. Tsiatis, 2006. "Semiparametric transformation models for the case-cohort study," Biometrika, Biometrika Trust, vol. 93(1), pages 207-214, March.
    2. Wenbin Lu, 2004. "On semiparametric transformation cure models," Biometrika, Biometrika Trust, vol. 91(2), pages 331-343, June.
    3. Hart, Jeffrey D. & Wehrly, Thomas E., 1993. "Consistency of cross-validation when the data are curves," Stochastic Processes and their Applications, Elsevier, vol. 45(2), pages 351-361, April.
    4. Zonghui Hu, 2004. "Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data," Biometrika, Biometrika Trust, vol. 91(2), pages 251-262, June.
    5. Hall, Peter & Muller, Hans-Georg, 2003. "Order-Preserving Nonparametric Regression, With Applications to Conditional Distribution and Quantile Function Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 598-608, January.
    6. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    7. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    8. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    9. Lin D Y & Ying Z, 2001. "Semiparametric and Nonparametric Regression Analysis of Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 103-126, March.
    10. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    11. J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minjung Kwak, 2017. "Estimation and inference of the joint conditional distribution for multivariate longitudinal data using nonparametric copulas," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 491-514, July.
    2. Lin Liu & Jianbo Li & Riquan Zhang, 2014. "General partially linear additive transformation model with right-censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2257-2269, October.
    3. Mohammed Chowdhury & Colin Wu & Reza Modarres, 2018. "Nonparametric estimation of conditional distribution functions with longitudinal data and time-varying parametric models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(1), pages 61-83, January.
    4. Colin O. Wu & Xin Tian, 2013. "Nonparametric Estimation of Conditional Distributions and Rank-Tracking Probabilities With Time-Varying Transformation Models in Longitudinal Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 971-982, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Chowdhury & Colin Wu & Reza Modarres, 2018. "Nonparametric estimation of conditional distribution functions with longitudinal data and time-varying parametric models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(1), pages 61-83, January.
    2. Gu, Minggao & Wu, Yueqin & Huang, Bin, 2014. "Partial marginal likelihood estimation for general transformation models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 1-18.
    3. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    4. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.
    5. Wang, Qihua & Zhang, Riquan, 2009. "Statistical estimation in varying coefficient models with surrogate data and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2389-2405, November.
    6. Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
    7. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    8. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    9. Tang Qingguo & Cheng Longsheng, 2008. "M-estimation and B-spline approximation for varying coefficient models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 611-625.
    10. Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
    11. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
    12. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    13. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
    14. Yiqiang Lu & Riquan Zhang, 2009. "Smoothing spline estimation of generalised varying-coefficient mixed model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 815-825.
    15. Zhang, Riquan & Li, Guoying, 2007. "Averaged estimation of functional-coefficient regression models with different smoothing variables," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 455-461, February.
    16. Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
    17. Abdelaati Daouia & Byeong U. Park, 2013. "On Projection-type Estimators of Multivariate Isotonic Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 363-386, June.
    18. Hidetoshi Matsui & Toshihiro Misumi, 2015. "Variable selection for varying-coefficient models with the sparse regularization," Computational Statistics, Springer, vol. 30(1), pages 43-55, March.
    19. Li, Shuwei & Hu, Tao & Zhao, Xingqiu & Sun, Jianguo, 2019. "A class of semiparametric transformation cure models for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 153-165.
    20. Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:22:y:2010:i:2:p:133-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.