Heterogeneous reciprocal graphical models
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.12791
Download full text from publisher
References listed on IDEAS
- Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2014. "Dependent mixture models: Clustering and borrowing information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 417-433.
- Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
- Sylvie Goetgeluk & Stijn Vansteelandt & Els Goetghebeur, 2008. "Estimation of controlled direct effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 1049-1066, November.
- Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
- Hao Wang & Mike West, 2009. "Bayesian analysis of matrix normal graphical models," Biometrika, Biometrika Trust, vol. 96(4), pages 821-834.
- Peter J. Green & Alun Thomas, 2013. "Sampling decomposable graphs using a Markov chain on junction trees," Biometrika, Biometrika Trust, vol. 100(1), pages 91-110.
- Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Junyi & Dassios, Angelos, 2023. "Truncated two-parameter Poisson-Dirichlet approximation for Pitman-Yor process hierarchical models," LSE Research Online Documents on Economics 120294, London School of Economics and Political Science, LSE Library.
- van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
- Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
- Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
- Lee, Kyoungjae & Cao, Xuan, 2022. "Bayesian joint inference for multiple directed acyclic graphs," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
- Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
- van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
- Christine B. Peterson & Nathan Osborne & Francesco C. Stingo & Pierrick Bourgeat & James D. Doecke & Marina Vannucci, 2020. "Bayesian modeling of multiple structural connectivity networks during the progression of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 76(4), pages 1120-1132, December.
- Zhixiang Lin & Tao Wang & Can Yang & Hongyu Zhao, 2017. "On joint estimation of Gaussian graphical models for spatial and temporal data," Biometrics, The International Biometric Society, vol. 73(3), pages 769-779, September.
- Elin Shaddox & Francesco C. Stingo & Christine B. Peterson & Sean Jacobson & Charmion Cruickshank-Quinn & Katerina Kechris & Russell Bowler & Marina Vannucci, 2018. "A Bayesian Approach for Learning Gene Networks Underlying Disease Severity in COPD," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 59-85, April.
- Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
- Beatrice Franzolini & Alexandros Beskos & Maria De Iorio & Warrick Poklewski Koziell & Karolina Grzeszkiewicz, 2022. "Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market," Papers 2208.00952, arXiv.org, revised May 2023.
- Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
- Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
- Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
- Emma Pierson & the GTEx Consortium & Daphne Koller & Alexis Battle & Sara Mostafavi, 2015. "Sharing and Specificity of Co-expression Networks across 35 Human Tissues," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-19, May.
- Zongliang Hu & Zhishui Hu & Kai Dong & Tiejun Tong & Yuedong Wang, 2021. "A shrinkage approach to joint estimation of multiple covariance matrices," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 339-374, April.
- Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
- Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2022. "Jewel 2.0 : An Improved Joint Estimation Method for Multiple Gaussian Graphical Models," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
- Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Huitong Qiu & Fang Han & Han Liu & Brian Caffo, 2016. "Joint estimation of multiple graphical models from high dimensional time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 487-504, March.
- Mingyang Ren & Sanguo Zhang & Qingzhao Zhang & Shuangge Ma, 2022. "Gaussian graphical model‐based heterogeneity analysis via penalized fusion," Biometrics, The International Biometric Society, vol. 78(2), pages 524-535, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:606-615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.