IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i514p600-620.html
   My bibliography  Save this article

Exact Post-Selection Inference for Sequential Regression Procedures

Author

Listed:
  • Ryan J. Tibshirani
  • Jonathan Taylor
  • Richard Lockhart
  • Robert Tibshirani

Abstract

We propose new inference tools for forward stepwise regression, least angle regression, and the lasso. Assuming a Gaussian model for the observation vector y, we first describe a general scheme to perform valid inference after any selection event that can be characterized as y falling into a polyhedral set. This framework allows us to derive conditional (post-selection) hypothesis tests at any step of forward stepwise or least angle regression, or any step along the lasso regularization path, because, as it turns out, selection events for these procedures can be expressed as polyhedral constraints on y. The p-values associated with these tests are exactly uniform under the null distribution, in finite samples, yielding exact Type I error control. The tests can also be inverted to produce confidence intervals for appropriate underlying regression parameters. The R package selectiveInference, freely available on the CRAN repository, implements the new inference tools described in this article. Supplementary materials for this article are available online.

Suggested Citation

  • Ryan J. Tibshirani & Jonathan Taylor & Richard Lockhart & Robert Tibshirani, 2016. "Exact Post-Selection Inference for Sequential Regression Procedures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 600-620, April.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:600-620
    DOI: 10.1080/01621459.2015.1108848
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1108848
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1108848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:600-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.