IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v106i493y2011p296-305.html
   My bibliography  Save this article

EEBoost: A General Method for Prediction and Variable Selection Based on Estimating Equations

Author

Listed:
  • Wolfson, Julian

Abstract

No abstract is available for this item.

Suggested Citation

  • Wolfson, Julian, 2011. "EEBoost: A General Method for Prediction and Variable Selection Based on Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 296-305.
  • Handle: RePEc:bes:jnlasa:v:106:i:493:y:2011:p:296-305
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2011.tm10098
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaughan, Gregory, 2020. "Efficient big data model selection with applications to fraud detection," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1116-1127.
    2. Gregory Vaughan & Robert Aseltine & Kun Chen & Jun Yan, 2017. "Stagewise generalized estimating equations with grouped variables," Biometrics, The International Biometric Society, vol. 73(4), pages 1332-1342, December.
    3. Li‐Pang Chen & Bangxu Qiu, 2023. "Analysis of length‐biased and partly interval‐censored survival data with mismeasured covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 3929-3940, December.
    4. Liang, Lixing & Zhuang, Yipeng & Yu, Philip L.H., 2024. "Variable selection for high-dimensional incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:106:i:493:y:2011:p:296-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.