IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0228098.html
   My bibliography  Save this article

How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials

Author

Listed:
  • Casimir Ledoux Sofeu
  • Virginie Rondeau

Abstract

Background and Objective: The use of valid surrogate endpoints can accelerate the development of phase III trials. Numerous validation methods have been proposed with the most popular used in a context of meta-analyses, based on a two-step analysis strategy. For two failure time endpoints, two association measures are usually considered, Kendall’s τ at individual level and adjusted R2 (adjR t r i a l 2) at trial level. However, adjR t r i a l 2 is not always available mainly due to model estimation constraints. More recently, we proposed a one-step validation method based on a joint frailty model, with the aim of reducing estimation issues and estimation bias on the surrogacy evaluation criteria. The model was quite robust with satisfactory results obtained in simulation studies. This study seeks to popularize this new surrogate endpoints validation approach by making the method available in a user-friendly R package. Methods: We provide numerous tools in the frailtypack R package, including more flexible functions, for the validation of candidate surrogate endpoints using data from multiple randomized clinical trials. Results: We implemented the surrogate threshold effect which is used in combination with R t r i a l 2 to make decisions concerning the validity of the surrogate endpoints. It is also possible thanks to frailtypack to predict the treatment effect on the true endpoint in a new trial using the treatment effect observed on the surrogate endpoint. The leave-one-out cross-validation is available for assessing the accuracy of the prediction using the joint surrogate model. Other tools include data generation, simulation study and graphic representations. We illustrate the use of the new functions with both real data and simulated data. Conclusion: This article proposes new attractive and well developed tools for validating failure time surrogate endpoints.

Suggested Citation

  • Casimir Ledoux Sofeu & Virginie Rondeau, 2020. "How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-25, January.
  • Handle: RePEc:plo:pone00:0228098
    DOI: 10.1371/journal.pone.0228098
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228098
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0228098&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0228098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shi, Qian & Renfro, Lindsay A. & Bot, Brian M. & Burzykowski, Tomasz & Buyse, Marc & Sargent, Daniel J., 2011. "Comparative assessment of trial-level surrogacy measures for candidate time-to-event surrogate endpoints in clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2748-2757, September.
    2. Ariel Alonso & Geert Molenberghs, 2007. "Surrogate Marker Evaluation from an Information Theory Perspective," Biometrics, The International Biometric Society, vol. 63(1), pages 180-186, March.
    3. Tomasz Burzykowski & Geert Molenberghs & Marc Buyse & Helena Geys & Didier Renard, 2001. "Validation of surrogate end points in multiple randomized clinical trials with failure time end points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 405-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renfro, Lindsay A. & Shi, Qian & Xue, Yuan & Li, Junlong & Shang, Hongwei & Sargent, Daniel J., 2014. "Center-within-trial versus trial-level evaluation of surrogate endpoints," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 1-20.
    2. Erin E. Gabriel & Michael J. Daniels & M. Elizabeth Halloran, 2016. "Comparing biomarkers as trial level general surrogates," Biometrics, The International Biometric Society, vol. 72(4), pages 1046-1054, December.
    3. Ariel Alonso & Helena Geys & Geert Molenberghs & Michael G. Kenward & Tony Vangeneugden, 2004. "Validation of Surrogate Markers in Multiple Randomized Clinical Trials with Repeated Measurements: Canonical Correlation Approach," Biometrics, The International Biometric Society, vol. 60(4), pages 845-853, December.
    4. Lindsay A. Renfro & Bradley P. Carlin & Daniel J. Sargent, 2012. "Bayesian Adaptive Trial Design for a Newly Validated Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(1), pages 258-267, March.
    5. Xiaoyun Li & Cong Chen & Wen Li, 2018. "Adaptive Biomarker Population Selection in Phase III Confirmatory Trials with Time-to-Event Endpoints," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 324-341, August.
    6. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    7. Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
    8. Debashis Ghosh, 2009. "On Assessing Surrogacy in a Single Trial Setting Using a Semicompeting Risks Paradigm," Biometrics, The International Biometric Society, vol. 65(2), pages 521-529, June.
    9. Bo-Hong Wu & Hirofumi Michimae & Takeshi Emura, 2020. "Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model," Computational Statistics, Springer, vol. 35(4), pages 1525-1552, December.
    10. Margaux Delporte & Steffen Fieuws & Geert Molenberghs & Geert Verbeke & Simeon Situma Wanyama & Elpis Hatziagorou & Christiane De Boeck, 2022. "A joint normal‐binary (probit) model," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 37-51, December.
    11. Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
    12. Tomasz Burzykowski & Geert Molenberghs & Marc Buyse, 2004. "The validation of surrogate end points by using data from randomized clinical trials: a case‐study in advanced colorectal cancer," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(1), pages 103-124, February.
    13. Debashis Ghosh, 2008. "Semiparametric Inference for Surrogate Endpoints with Bivariate Censored Data," Biometrics, The International Biometric Society, vol. 64(1), pages 149-156, March.
    14. Welz, Thilo & Viechtbauer, Wolfgang & Pauly, Markus, 2023. "Cluster-robust estimators for multivariate mixed-effects meta-regression," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    15. Layla Parast & Tianxi Cai & Lu Tian, 2023. "Testing for heterogeneity in the utility of a surrogate marker," Biometrics, The International Biometric Society, vol. 79(2), pages 799-810, June.
    16. Geert Molenberghs, 2012. "Discussion Contribution to 091037PR4 (Ghosh, Taylor, and Sargent)," Biometrics, The International Biometric Society, vol. 68(1), pages 233-235, March.
    17. Shi, Qian & Renfro, Lindsay A. & Bot, Brian M. & Burzykowski, Tomasz & Buyse, Marc & Sargent, Daniel J., 2011. "Comparative assessment of trial-level surrogacy measures for candidate time-to-event surrogate endpoints in clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2748-2757, September.
    18. Debashis Ghosh & Jeremy M. G. Taylor & Daniel J. Sargent, 2012. "Meta-analysis for Surrogacy: Accelerated Failure Time Models and Semicompeting Risks Modeling," Biometrics, The International Biometric Society, vol. 68(1), pages 226-232, March.
    19. Ghosh Debashis, 2008. "On the Plackett Distribution with Bivariate Censored Data," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-24, May.
    20. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0228098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.