IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i4d10.1007_s00180-019-00888-w.html
   My bibliography  Save this article

Semiparametric approaches for matched case–control studies with error-in-covariates

Author

Listed:
  • Nels G. Johnson

    (University of Tennessee)

  • Inyoung Kim

    (Virginia Tech)

Abstract

The matched case–control study is a popular design in public health, biomedical, and epidemiological research for human, animal, and other subjects for clustered binary outcomes. Often covariates in such studies are measured with error. Not accounting for this error can lead to incorrect inference for all covariates in the model. The methods for assessing and characterizing error-in-covariates in matched case–control studies are quite limited. In this article we propose several approaches for handling error-in-covariates that detect both parametric and nonparametric relationships between the covariates and the binary outcome. We propose a Bayesian approach and two approximate-Bayesian approaches for addressing error-in-covariates that is additive and Gaussian, where the variable measured with error has an unknown, nonlinear relationship with the response. The Bayesian approaches use an approximate latent variable probit model. All methods are developed using the nonparametric method of low-rank thin-plate splines. We assess the performance of each method in terms of mean squared error and mean bias in both simulations and a perturbed example of 1–4 matched case-crossover study.

Suggested Citation

  • Nels G. Johnson & Inyoung Kim, 2019. "Semiparametric approaches for matched case–control studies with error-in-covariates," Computational Statistics, Springer, vol. 34(4), pages 1675-1692, December.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00888-w
    DOI: 10.1007/s00180-019-00888-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00888-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00888-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
    2. Lisa M. McShane & Douglas N. Midthune & Joanne F. Dorgan & Laurence S. Freedman & Raymond J. Carroll, 2001. "Covariate Measurement Error Adjustment for Matched Case–Control Studies," Biometrics, The International Biometric Society, vol. 57(1), pages 62-73, March.
    3. Berry S. M. & Carroll R. J & Ruppert D., 2002. "Bayesian Smoothing and Regression Splines for Measurement Error Problems," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 160-169, March.
    4. Huang Y. & Wang C.Y., 2001. "Consistent Functional Methods for Logistic Regression With Errors in Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1469-1482, December.
    5. Tester, J.M. & Rutherford, G.W. & Wald, Z. & Rutherford, M.W., 2004. "A Matched Case-Control Study Evaluating the Effectiveness of Speed Humps in Reducing Child Pedestrian Injuries," American Journal of Public Health, American Public Health Association, vol. 94(4), pages 646-650.
    6. Samiran Sinha & Bani K. Mallick & Victor Kipnis & Raymond J. Carroll, 2010. "Semiparametric Bayesian Analysis of Nutritional Epidemiology Data in the Presence of Measurement Error," Biometrics, The International Biometric Society, vol. 66(2), pages 444-454, June.
    7. Duchwan Ryu & Erning Li & Bani K. Mallick, 2011. "Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 67(2), pages 454-466, June.
    8. Raymond J. Carroll & David Ruppert & Ciprian M. Crainiceanu & Tor D. Tosteson & Margaret R. Karagas, 2004. "Nonlinear and Nonparametric Regression and Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 736-750, January.
    9. A. Guolo, 2008. "A Flexible Approach to Measurement Error Correction in Case–Control Studies," Biometrics, The International Biometric Society, vol. 64(4), pages 1207-1214, December.
    10. Buzas, J. S. & Stefanski, L. A., 1996. "A note on corrected-score estimation," Statistics & Probability Letters, Elsevier, vol. 28(1), pages 1-8, June.
    11. Raymond J. Carroll & Kathryn Roeder & Larry Wasserman, 1999. "Flexible Parametric Measurement Error Models," Biometrics, The International Biometric Society, vol. 55(1), pages 44-54, March.
    12. Sinha, Samiran & Mukherjee, Bhramar & Ghosh, Malay & Mallick, Bani K. & Carroll, Raymond J., 2005. "Semiparametric Bayesian Analysis of Matched Case-Control Studies With Missing Exposure," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 591-601, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sinha, Samiran & Yoo, Seungyoon, 2013. "Score tests in the presence of errors in covariates in matched case-control studies," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 157-171.
    2. Li, Tong & Hsiao, Cheng, 2004. "Robust estimation of generalized linear models with measurement errors," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 51-65.
    3. Brent A Coull, 2011. "A Random Intercepts–Functional Slopes Model for Flexible Assessment of Susceptibility in Longitudinal Designs," Biometrics, The International Biometric Society, vol. 67(2), pages 486-494, June.
    4. Torabi, Mahmoud, 2013. "Likelihood inference in generalized linear mixed measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 549-557.
    5. repec:jss:jstsof:37:i05 is not listed on IDEAS
    6. Polzehl, Jorg & Zwanzig, Silvelyn, 2004. "On a symmetrized simulation extrapolation estimator in linear errors-in-variables models," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 675-688, November.
    7. Suvo Chatterjee & Shrabanti Chowdhury & Duchwan Ryu & Sanjib Basu, 2023. "Bayesian functional data analysis over dependent regions and its application for identification of differentially methylated regions," Biometrics, The International Biometric Society, vol. 79(4), pages 3294-3306, December.
    8. Alexandre Rodrigues & Peter Diggle & Renato Assuncao, 2010. "Semiparametric approach to point source modelling in epidemiology and criminology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 533-542, May.
    9. Erin E. Gabriel & Michael J. Daniels & M. Elizabeth Halloran, 2016. "Comparing biomarkers as trial level general surrogates," Biometrics, The International Biometric Society, vol. 72(4), pages 1046-1054, December.
    10. Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," Working Papers 2017011, The University of Sheffield, Department of Economics.
    11. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    12. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    13. Bhadra, Anindya, 2017. "An expectation–maximization scheme for measurement error models," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 61-68.
    14. Hanfelt, John J. & Li, Ruosha & Pan, Yi & Payment, Pierre, 2011. "Robust inference for sparse cluster-correlated count data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 182-192, January.
    15. Gustafson, Paul & Le, Nhu D. & Vallée, Marc, 2000. "Parametric Bayesian analysis of case-control data with imprecise exposure measurements," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 357-363, May.
    16. John Staudenmayer & Donna Spiegelman, 2002. "Segmented Regression in the Presence of Covariate Measurement Error in Main Study/Validation Study Designs," Biometrics, The International Biometric Society, vol. 58(4), pages 871-877, December.
    17. Li, Mengyan & Ma, Yanyuan & Li, Runze, 2019. "Semiparametric regression for measurement error model with heteroscedastic error," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 320-338.
    18. Di Shu & Grace Y. Yi, 2018. "Estimation of Causal Effect Measures in the Presence of Measurement Error in Confounders," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 233-254, April.
    19. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    20. Bhramar Mukherjee & Jaeil Ahn & Stephen B. Gruber & Malay Ghosh & Nilanjan Chatterjee, 2010. "Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis," Biometrics, The International Biometric Society, vol. 66(3), pages 934-948, September.
    21. Xiaohong Chen & Yingyao Hu & Arthur Lewbel, 2007. "Nonparametric Identification and Estimation of Nonclassical Errors-in-Variables Models Without Additional Information," Boston College Working Papers in Economics 676, Boston College Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00888-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.