IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v79y2017i2d10.1007_s13571-016-0129-3.html
   My bibliography  Save this article

Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis

Author

Listed:
  • Nilotpal Sanyal

    (University of California)

  • Marco A. R. Ferreira

    (Virginia Tech)

Abstract

We propose a Bayesian hierarchical wavelet methodology for nonparametric regression based on nonlocal priors. Our methodology assumes for the wavelet coefficients a prior that is a mixture of a point mass at zero and a Johnson-Rossell nonlocal prior. We consider two choices of Johnson-Rossell nonlocal priors: the moment prior and the inverse moment prior. To borrow strength across wavelet coefficients, in addition to more traditional specifications from the wavelet literature, we consider a logit specification for the mixture probability and a polynomial decay specification for the scale parameter. To estimate these specifications’ hyperparameters, we propose an empirical Bayes methodology based on Laplace approximation that allows fast analytic posterior inference for the wavelet coefficients. To assess performance, we perform a simulation study to compare our methodology to several other wavelet-based methods available in the literature. In terms of mean squared error, our methodology with the inverse moment prior yields superior results for cases of low signal-to-noise ratio, as well as for moderate to large sample sizes. Finally, we illustrate the flexibility of our novel methodology with an application to a functional magnetic resonance imaging (fMRI) dataset from a study of brain activations associated with working memory.

Suggested Citation

  • Nilotpal Sanyal & Marco A. R. Ferreira, 2017. "Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 361-388, November.
  • Handle: RePEc:spr:sankhb:v:79:y:2017:i:2:d:10.1007_s13571-016-0129-3
    DOI: 10.1007/s13571-016-0129-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-016-0129-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-016-0129-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merlise Clyde & Edward I. George, 2000. "Flexible empirical Bayes estimation for wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 681-698.
    2. Abramovich, Felix & Benjamini, Yoav, 1996. "Adaptive thresholding of wavelet coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 22(4), pages 351-361, August.
    3. Antoniadis, Anestis & Bigot, Jeremie & Sapatinas, Theofanis, 2001. "Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 6(i06).
    4. F. Abramovich & T. Sapatinas & B. W. Silverman, 1998. "Wavelet thresholding via a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 725-749.
    5. Esther Salazar & Marco A. R. Ferreira, 2011. "Temporal Aggregation of Lognormal AR processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 661-671, November.
    6. Valen E. Johnson & David Rossell, 2010. "On the use of non‐local prior densities in Bayesian hypothesis tests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 143-170, March.
    7. Andrew Hoegh & Marco A. R. Ferreira & Scotland Leman, 2016. "Spatiotemporal model fusion: multiscale modelling of civil unrest," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 529-545, August.
    8. Xue Wang & Andrew T. A. Wood, 2006. "Empirical Bayes block shrinkage of wavelet coefficients via the noncentral χ-super-2 distribution," Biometrika, Biometrika Trust, vol. 93(3), pages 705-722, September.
    9. Davide Altomare & Guido Consonni & Luca La Rocca, 2013. "Objective Bayesian Search of Gaussian Directed Acyclic Graphical Models for Ordered Variables with Non-Local Priors," Biometrics, The International Biometric Society, vol. 69(2), pages 478-487, June.
    10. Stuart Barber & Guy P. Nason, 2004. "Real nonparametric regression using complex wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 927-939, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho-Hsiang Wu & Marco A. R. Ferreira & Mohamed Elkhouly & Tieming Ji, 2020. "Hyper Nonlocal Priors for Variable Selection in Generalized Linear Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 147-185, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reményi, Norbert & Vidakovic, Brani, 2013. "Λ-neighborhood wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 404-416.
    2. Fryzlewicz, Piotr, 2007. "Bivariate hard thresholding in wavelet function estimation," LSE Research Online Documents on Economics 25219, London School of Economics and Political Science, LSE Library.
    3. Stuart Barber & Guy P. Nason, 2004. "Real nonparametric regression using complex wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 927-939, November.
    4. Ho-Hsiang Wu & Marco A. R. Ferreira & Mohamed Elkhouly & Tieming Ji, 2020. "Hyper Nonlocal Priors for Variable Selection in Generalized Linear Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 147-185, February.
    5. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    6. Hee-Seok Oh & Donghoh Kim & Youngjo Lee, 2009. "Cross-validated wavelet shrinkage," Computational Statistics, Springer, vol. 24(3), pages 497-512, August.
    7. Alex Rodrigo dos S. Sousa & Nancy L. Garcia & Brani Vidakovic, 2021. "Bayesian wavelet shrinkage with beta priors," Computational Statistics, Springer, vol. 36(2), pages 1341-1363, June.
    8. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    9. Abramovich, Felix & Besbeas, Panagiotis & Sapatinas, Theofanis, 2002. "Empirical Bayes approach to block wavelet function estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 435-451, June.
    10. Mahlet G. Tadesse & Joseph G. Ibrahim & Marina Vannucci & Robert Gentleman, 2005. "Wavelet Thresholding with Bayesian False Discovery Rate Control," Biometrics, The International Biometric Society, vol. 61(1), pages 25-35, March.
    11. Marco Di Zio & Arnoldo Frigessi, 1999. "Smoothness in Bayesian Non-parametric Regression with Wavelets," Methodology and Computing in Applied Probability, Springer, vol. 1(4), pages 391-405, December.
    12. Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
    13. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    14. repec:dau:papers:123456789/13437 is not listed on IDEAS
    15. Fangting Zhou & Kejun He & Yang Ni, 2023. "Individualized causal discovery with latent trajectory embedded Bayesian networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3191-3202, December.
    16. A. Antoniadis, 1997. "Rejoinder," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 143-144, August.
    17. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    18. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    19. Gabriel Huerta, 2005. "Multivariate Bayes Wavelet shrinkage and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(5), pages 529-542.
    20. Kwan, Yum K. & Leung, Charles Ka Yui & Dong, Jinyue, 2015. "Comparing consumption-based asset pricing models: The case of an Asian city," Journal of Housing Economics, Elsevier, vol. 28(C), pages 18-41.
    21. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Documents de travail du Centre d'Economie de la Sorbonne 15085, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:79:y:2017:i:2:d:10.1007_s13571-016-0129-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.