IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i3p591-602.html
   My bibliography  Save this article

Model selection for Gaussian concentration graphs

Author

Listed:
  • Mathias Drton

Abstract

A multivariate Gaussian graphical Markov model for an undirected graph G, also called a covariance selection model or concentration graph model, is defined in terms of the Markov properties, i.e. conditional independences associated with G, which in turn are equivalent to specified zeros among the set of pairwise partial correlation coefficients. By means of Fisher's z-transformation and Šidák's correlation inequality, conservative simultaneous confidence intervals for the entire set of partial correlations can be obtained, leading to a simple method for model selection that controls the overall error rate for incorrect edge inclusion. The simultaneous p-values corresponding to the partial correlations are partitioned into three disjoint sets, a significant set S, an indeterminate set I and a nonsignificant set N. Our model selection method selects two graphs, a graph Ĝ-sub-SI whose edges correspond to the set S∪I, and a more conservative graph Ĝ-sub-S whose edges correspond to S only. Similar considerations apply to covariance graph models, which are defined in terms of marginal independence rather than conditional independence. The method is applied to some well-known examples and to simulated data. Copyright Biometrika Trust 2004, Oxford University Press.

Suggested Citation

  • Mathias Drton, 2004. "Model selection for Gaussian concentration graphs," Biometrika, Biometrika Trust, vol. 91(3), pages 591-602, September.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:3:p:591-602
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belloni, Alexandre. & Chen, Mingli & Chernozhukov, Victor, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Financial Risk Management," The Warwick Economics Research Paper Series (TWERPS) 1125, University of Warwick, Department of Economics.
    2. Baccini, A. & Barabesi, L. & Marcheselli, M. & Pratelli, L., 2012. "Statistical inference on the h-index with an application to top-scientist performance," Journal of Informetrics, Elsevier, vol. 6(4), pages 721-728.
    3. Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk," Papers 1607.00286, arXiv.org, revised Oct 2019.
    4. Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
    5. Helen Armstrong & Christopher K. Carter & Kevin K. F. Wong & Robert Kohn, 2007. "Bayesian Covariance Matrix Estimation using a Mixture of Decomposable Graphical Models," Discussion Papers 2007-13, School of Economics, The University of New South Wales.
    6. Aitken, C.G.G. & Lucy, D. & Zadora, G. & Curran, J.M., 2006. "Evaluation of transfer evidence for three-level multivariate data with the use of graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2571-2588, June.
    7. Bodnar, Olha & Touli, Elena Farahbakhsh, 2023. "Exact test theory in Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    8. Davide Altomare & Guido Consonni & Luca La Rocca, 2013. "Objective Bayesian Search of Gaussian Directed Acyclic Graphical Models for Ordered Variables with Non-Local Priors," Biometrics, The International Biometric Society, vol. 69(2), pages 478-487, June.
    9. Youssef M Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2020. "Sparse Covariance Estimation in Logit Mixture Models," Papers 2001.05034, arXiv.org.
    10. Gottard, Anna & Pacillo, Simona, 2010. "Robust concentration graph model selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3070-3079, December.
    11. He, Yong & Zhang, Xinsheng & Wang, Pingping & Zhang, Liwen, 2017. "High dimensional Gaussian copula graphical model with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 457-474.
    12. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    13. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    14. Nanny Wermuth & Kayvan Sadeghi, 2012. "Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 215-252, June.
    15. Pei Wang & Dennis L. Chao & Li Hsu, 2011. "Learning Oncogenic Pathways from Binary Genomic Instability Data," Biometrics, The International Biometric Society, vol. 67(1), pages 164-173, March.
    16. Davide Altomare & Guido Consonni & Luca La Rocca, 2011. "Objective Bayesian Search of Gaussian DAG Models with Non-local Priors," Quaderni di Dipartimento 140, University of Pavia, Department of Economics and Quantitative Methods.
    17. Guido Consonni & Luca La Rocca & Stefano Peluso, 2017. "Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 741-764, September.
    18. Linh H. Nghiem & Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2022. "Estimation of graphical models for skew continuous data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1811-1841, December.
    19. Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
    20. Koldanov, Petr & Koldanov, Alexander & Kalyagin, Valeriy & Pardalos, Panos, 2017. "Uniformly most powerful unbiased test for conditional independence in Gaussian graphical model," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 90-95.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:3:p:591-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.