IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i2p448-458.html
   My bibliography  Save this article

Statistical testing of optimality conditions in multiresponse simulation-based optimization

Author

Listed:
  • Bettonvil, Bert
  • del Castillo, Enrique
  • Kleijnen, Jack P.C.

Abstract

This article studies simulation-based optimization with multiple outputs. It assumes that the simulation model has one random objective function and must satisfy given constraints on the other random outputs. It presents a statistical procedure for testing whether a specific input combination (proposed by some optimization heuristic) satisfies the Karush-Kuhn-Tucker (KKT) first-order optimality conditions. The article focuses on "expensive" simulations, which have small sample sizes. The article applies the classic t test to check whether the specific input combination is feasible, and whether any constraints are binding; next, it applies bootstrapping (resampling) to test the estimated gradients in the KKT conditions. The new methodology is applied to three examples, which gives encouraging empirical results.

Suggested Citation

  • Bettonvil, Bert & del Castillo, Enrique & Kleijnen, Jack P.C., 2009. "Statistical testing of optimality conditions in multiresponse simulation-based optimization," European Journal of Operational Research, Elsevier, vol. 199(2), pages 448-458, December.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:2:p:448-458
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)01032-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acácio M. De O. Porta Nova & James R. Wilson, 1989. "Estimation of Multiresponse Simulation Metamodels Using Control Variates," Management Science, INFORMS, vol. 35(11), pages 1316-1333, November.
    2. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    3. W C M van Beers & J P C Kleijnen, 2003. "Kriging for interpolation in random simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 255-262, March.
    4. Martin, Michael A., 2007. "Bootstrap hypothesis testing for some common statistical problems: A critical evaluation of size and power properties," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6321-6342, August.
    5. Sridhar Bashyam & Michael C. Fu, 1998. "Optimization of (s, S) Inventory Systems with Random Lead Times and a Service Level Constraint," Management Science, INFORMS, vol. 44(12-Part-2), pages 243-256, December.
    6. Kleijnen, Jack P. C. & van Beers, Wim C. M., 2005. "Robustness of Kriging when interpolating in random simulation with heterogeneous variances: Some experiments," European Journal of Operational Research, Elsevier, vol. 165(3), pages 826-834, September.
    7. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, January.
    8. Kao, Chiang & Chen, Shih-Pin, 2006. "A stochastic quasi-Newton method for simulation response optimization," European Journal of Operational Research, Elsevier, vol. 173(1), pages 30-46, August.
    9. Safizadeh, M. Hossein, 2002. "Minimizing the bias and variance of the gradient estimate in RSM simulation studies," European Journal of Operational Research, Elsevier, vol. 136(1), pages 121-135, January.
    10. Itir Karaesmen & Garrett van Ryzin, 2004. "Overbooking with Substitutable Inventory Classes," Operations Research, INFORMS, vol. 52(1), pages 83-104, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebru Angün & Jack Kleijnen, 2012. "An Asymptotic Test of Optimality Conditions in Multiresponse Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 53-65, February.
    2. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    3. Bekker, James & Aldrich, Chris, 2011. "The cross-entropy method in multi-objective optimisation: An assessment," European Journal of Operational Research, Elsevier, vol. 211(1), pages 112-121, May.
    4. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    5. Kabirian, Alireza & Ólafsson, Sigurdur, 2011. "Continuous optimization via simulation using Golden Region search," European Journal of Operational Research, Elsevier, vol. 208(1), pages 19-27, January.
    6. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    7. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bettonvil, B.W.M. & Del Castillo, E. & Kleijnen, J.P.C., 2007. "Statistical Testing of Optimality Conditions in Multiresponse Simulation-based Optimization (Revision of 2005-81)," Other publications TiSEM 3e563d88-0029-47f6-a66b-e, Tilburg University, School of Economics and Management.
    2. Angun, M.E. & Kleijnen, Jack P.C., 2012. "An asymptotic test of optimality conditions in multiresponse simulation optimization," Other publications TiSEM a69dfa59-b0e1-45bd-8cd6-a, Tilburg University, School of Economics and Management.
    3. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    4. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    5. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    6. Kleijnen, Jack P.C., 2013. "Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064)," Other publications TiSEM 6ac4e049-ad86-447f-aeec-a, Tilburg University, School of Economics and Management.
    7. Kleijnen, Jack P.C. & Beers, Wim van & Nieuwenhuyse, Inneke van, 2010. "Constrained optimization in expensive simulation: Novel approach," European Journal of Operational Research, Elsevier, vol. 202(1), pages 164-174, April.
    8. Ebru Angün & Jack Kleijnen, 2012. "An Asymptotic Test of Optimality Conditions in Multiresponse Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 53-65, February.
    9. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    10. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    11. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038)," Other publications TiSEM 4915047b-afe4-4fc7-8a1c-4, Tilburg University, School of Economics and Management.
    12. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    13. van Beers, Wim C.M. & Kleijnen, Jack P.C., 2008. "Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1099-1113, May.
    14. J.-J. Sinou & L. Nechak & S. Besset, 2018. "Kriging Metamodeling in Rotordynamics: Application for Predicting Critical Speeds and Vibrations of a Flexible Rotor," Complexity, Hindawi, vol. 2018, pages 1-26, March.
    15. Sumit Kunnumkal & Huseyin Topaloglu, 2009. "A stochastic approximation method for the single-leg revenue management problem with discrete demand distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 477-504, December.
    16. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    17. J P C Kleijnen & W C M van Beers, 2013. "Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
    18. Bozağaç, Doruk & Batmaz, İnci & Oğuztüzün, Halit, 2016. "Dynamic simulation metamodeling using MARS: A case of radar simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 124(C), pages 69-86.
    19. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    20. Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:2:p:448-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.