IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v59y2003i1p163-171.html
   My bibliography  Save this article

Accounting for Nonignorable Verification Bias in Assessment of Diagnostic Tests

Author

Listed:
  • Andrzej S. Kosinski
  • Huiman X. Barnhart

Abstract

No abstract is available for this item.

Suggested Citation

  • Andrzej S. Kosinski & Huiman X. Barnhart, 2003. "Accounting for Nonignorable Verification Bias in Assessment of Diagnostic Tests," Biometrics, The International Biometric Society, vol. 59(1), pages 163-171, March.
  • Handle: RePEc:bla:biomet:v:59:y:2003:i:1:p:163-171
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/1541-0420.00019
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Daniels & Joseph W. Hogan, 2000. "Reparameterizing the Pattern Mixture Model for Sensitivity Analyses Under Informative Dropout," Biometrics, The International Biometric Society, vol. 56(4), pages 1241-1248, December.
    2. Geert Molenberghs & Michael G. Kenward & Els Goetghebeur, 2001. "Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 15-29.
    3. J.A. Knottnerus, 1987. "The Effects of Disease Verification and Referral on the Relationship Between Symptoms and Diseases," Medical Decision Making, , vol. 7(3), pages 139-148, August.
    4. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    5. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    6. Rotnitzky Andrea & Daniel Scharfstein & Ting‐Li Su & James Robins, 2001. "Methods for Conducting Sensitivity Analysis of Trials with Potentially Nonignorable Competing Causes of Censoring," Biometrics, The International Biometric Society, vol. 57(1), pages 103-113, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data," Econometrics, MDPI, vol. 7(3), pages 1-27, September.
    2. Manuela Buzoianu & Joseph B. Kadane, 2009. "Optimal Bayesian Design for Patient Selection in a Clinical Study," Biometrics, The International Biometric Society, vol. 65(3), pages 953-961, September.
    3. Paul S. Albert, 2007. "Imputation Approaches for Estimating Diagnostic Accuracy for Multiple Tests from Partially Verified Designs," Biometrics, The International Biometric Society, vol. 63(3), pages 947-957, September.
    4. Roldán Nofuentes, J.A. & Luna del Castillo, J.D. & Montero Alonso, M.A., 2009. "Determining sample size to evaluate and compare the accuracy of binary diagnostic tests in the presence of partial disease verification," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 742-755, January.
    5. Frederico Z. Poleto & Julio M. Singer & Carlos Daniel Paulino, 2011. "Comparing diagnostic tests with missing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(6), pages 1207-1222, April.
    6. Danping Liu & Xiao-Hua Zhou, 2010. "A Model for Adjusting for Nonignorable Verification Bias in Estimation of the ROC Curve and Its Area with Likelihood-Based Approach," Biometrics, The International Biometric Society, vol. 66(4), pages 1119-1128, December.
    7. José Antonio Roldán-Nofuentes & Saad Bouh Regad, 2021. "Estimation of the Average Kappa Coefficient of a Binary Diagnostic Test in the Presence of Partial Verification," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    8. Martinez, Edson Zangiacomi & Alberto Achcar, Jorge & Louzada-Neto, Francisco, 2006. "Estimators of sensitivity and specificity in the presence of verification bias: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 601-611, November.
    9. Danping Liu & Xiao-Hua Zhou, 2013. "Covariate Adjustment in Estimating the Area Under ROC Curve with Partially Missing Gold Standard," Biometrics, The International Biometric Society, vol. 69(1), pages 91-100, March.
    10. Selin Merdan & Christine L. Barnett & Brian T. Denton & James E. Montie & David C. Miller, 2021. "OR Practice–Data Analytics for Optimal Detection of Metastatic Prostate Cancer," Operations Research, INFORMS, vol. 69(3), pages 774-794, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frederico Poleto & Geert Molenberghs & Carlos Paulino & Julio Singer, 2011. "Sensitivity analysis for incomplete continuous data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 589-606, November.
    2. Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
    3. Samiran Sinha & Krishna K. Saha & Suojin Wang, 2014. "Semiparametric approach for non-monotone missing covariates in a parametric regression model," Biometrics, The International Biometric Society, vol. 70(2), pages 299-311, June.
    4. Joseph W. Hogan & Xihong Lin & Benjamin Herman, 2004. "Mixtures of Varying Coefficient Models for Longitudinal Data with Discrete or Continuous Nonignorable Dropout," Biometrics, The International Biometric Society, vol. 60(4), pages 854-864, December.
    5. Margarita Moreno-Betancur & Grégoire Rey & Aurélien Latouche, 2015. "Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure," Biometrics, The International Biometric Society, vol. 71(2), pages 498-507, June.
    6. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    7. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    8. Richard Dennis, 2000. "Steps toward identifying central bank policy preferences," Working Paper Series 2000-13, Federal Reserve Bank of San Francisco.
    9. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    10. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    11. Browning, Martin & Carro, Jesus M., 2014. "Dynamic binary outcome models with maximal heterogeneity," Journal of Econometrics, Elsevier, vol. 178(2), pages 805-823.
    12. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    13. Hayakawa, Kazuhiko, 2016. "Identification problem of GMM estimators for short panel data models with interactive fixed effects," Economics Letters, Elsevier, vol. 139(C), pages 22-26.
    14. Elena Stanghellini & Eduwin Pakpahan, 2015. "Identification of causal effects in linear models: beyond instrumental variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 489-509, September.
    15. Neusser, Klaus, 2016. "A topological view on the identification of structural vector autoregressions," Economics Letters, Elsevier, vol. 144(C), pages 107-111.
    16. Orazio Attanasio & Sarah Cattan & Emla Fitzsimons & Costas Meghir & Marta Rubio-Codina, 2020. "Estimating the Production Function for Human Capital: Results from a Randomized Controlled Trial in Colombia," American Economic Review, American Economic Association, vol. 110(1), pages 48-85, January.
    17. Chrysanthos Dellarocas & Charles A. Wood, 2008. "The Sound of Silence in Online Feedback: Estimating Trading Risks in the Presence of Reporting Bias," Management Science, INFORMS, vol. 54(3), pages 460-476, March.
    18. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    19. Mardi Dungey & George Milunovich & Susan Thorp, 2008. "Unobservable Shocks as Carriers of Contagion: A Dynamic Analysis Using Identified Structural GARCH," NCER Working Paper Series 22, National Centre for Econometric Research.
    20. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:59:y:2003:i:1:p:163-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.