Estimation of high-dimensional factor models and its application in power data analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
- George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios, 2004.
"A New Method for Determining the Number of Factors in Factor Models with Large Datasets,"
Working Papers
525, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Kapetanios, George, 2010.
"A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
- George Kapetanios, 2005. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models with Large Datasets," Working Papers 551, Queen Mary University of London, School of Economics and Finance.
- Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
- Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
- Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
- Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
- Mario Forni & Lucrezia Reichlin, 1998.
"Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 453-473.
- Mario Forni & Lucrezia Reichlin, 1998. "Let's get real: a factor analytical approach to disaggregated business cycle dynamics," ULB Institutional Repository 2013/10147, ULB -- Universite Libre de Bruxelles.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
- Freyaldenhoven, Simon, 2022.
"Factor models with local factors — Determining the number of relevant factors,"
Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
- Simon Freyaldenhoven, 2021. "Factor Models with Local Factors—Determining the Number of Relevant Factors," Working Papers 21-15, Federal Reserve Bank of Philadelphia.
- Kemal Bagzibagli, 2014.
"Monetary transmission mechanism and time variation in the Euro area,"
Empirical Economics, Springer, vol. 47(3), pages 781-823, November.
- Kemal Bagzibagli, 2012. "Monetary Transmission Mechanism and Time Variation in the Euro Area," Discussion Papers 12-12, Department of Economics, University of Birmingham.
- Li, Hongjun & Li, Qi & Shi, Yutang, 2017. "Determining the number of factors when the number of factors can increase with sample size," Journal of Econometrics, Elsevier, vol. 197(1), pages 76-86.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Swiss Finance Institute Research Paper Series
22-81, Swiss Finance Institute.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
- Simon Freyaldenhoven, 2017.
"A Generalized Factor Model with Local Factors,"
2017 Papers
pfr361, Job Market Papers.
- Simon Freyaldenhoven, 2019. "A Generalized Factor Model with Local Factors," Working Papers 19-23, Federal Reserve Bank of Philadelphia.
- Yoshimasa Uematsu & Takashi Yamagata, 2019.
"Estimation of Weak Factor Models,"
DSSR Discussion Papers
96, Graduate School of Economics and Management, Tohoku University.
- Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053, Institute of Social and Economic Research, Osaka University.
- Alexander Chudik & M. Hashem Pesaran, 2013.
"Large panel data models with cross-sectional dependence: a survey,"
Globalization Institute Working Papers
153, Federal Reserve Bank of Dallas.
- Alexander Chudik & M. Hashem Pesaran, 2013. "Large Panel Data Models with Cross-Sectional Dependence: A Survey," CESifo Working Paper Series 4371, CESifo.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2023.
"Latent Factor Analysis in Short Panels,"
Papers
2306.14004, arXiv.org, revised May 2024.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2023. "Latent Factor Analysis in Short Panels," Swiss Finance Institute Research Paper Series 23-44, Swiss Finance Institute.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015.
"Risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
- Jianqing Fan & Yuan Liao & Xiaofeng Shi, 2013. "Risks of Large Portfolios," Papers 1302.0926, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2013. "Risks of large portfolios," MPRA Paper 44206, University Library of Munich, Germany.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"A diagnostic criterion for approximate factor structure,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2016. "A Diagnostic Criterion for Approximate Factor Structure," Swiss Finance Institute Research Paper Series 16-51, Swiss Finance Institute, revised Dec 2016.
- Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
- Kapetanios, George, 2010.
"A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
- George Kapetanios, 2005. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models with Large Datasets," Working Papers 551, Queen Mary University of London, School of Economics and Finance.
- Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015.
"Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study,"
L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
- Dalibor Stevanovic & Charles Olivier Mao Takongmo, 2014. "Selection of the number of factors in presence of structural instability: a Monte Carlo study," CIRANO Working Papers 2014s-44, CIRANO.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023.
"Estimation of a dynamic multi-level factor model with possible long-range dependence,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
- Rodríguez Caballero, Carlos Vladimir, 2017. "Estimation of a Dynamic Multilevel Factor Model with possible long-range dependence," DES - Working Papers. Statistics and Econometrics. WS 24614, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Kapetanios, George, 2010.
"A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
- George Kapetanios, 2005. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models with Large Datasets," Working Papers 551, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios, 2005. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models with Large Datasets," Working Papers 551, Queen Mary University of London, School of Economics and Finance.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2019-05-13 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.02061. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.