IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v163y2018icp80-95.html
   My bibliography  Save this article

Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler–Reiß distribution

Author

Listed:
  • Krupskii, Pavel
  • Joe, Harry
  • Lee, David
  • Genton, Marc G.

Abstract

The multivariate Hüsler–Reiß copula is obtained as a direct extreme-value limit from the convolution of a multivariate normal random vector and an exponential random variable multiplied by a vector of constants. It is shown how the set of Hüsler–Reiß parameters can be mapped to the parameters of this convolution model. Assuming there are no singular components in the Hüsler–Reiß copula, the convolution model leads to exact and approximate simulation methods. An application of simulation is to check if the Hüsler–Reiß copula with different parsimonious dependence structures provides adequate fit to some data consisting of multivariate extremes.

Suggested Citation

  • Krupskii, Pavel & Joe, Harry & Lee, David & Genton, Marc G., 2018. "Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler–Reiß distribution," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 80-95.
  • Handle: RePEc:eee:jmvana:v:163:y:2018:i:c:p:80-95
    DOI: 10.1016/j.jmva.2017.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17301525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    3. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    4. Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
    5. Marc G. Genton & Yanyuan Ma & Huiyan Sang, 2011. "On the likelihood function of Gaussian max-stable processes," Biometrika, Biometrika Trust, vol. 98(2), pages 481-488.
    6. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    7. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    8. Clément Dombry & Sebastian Engelke & Marco Oesting, 2016. "Exact simulation of max-stable processes," Biometrika, Biometrika Trust, vol. 103(2), pages 303-317.
    9. Gao, Xin & Song, Peter X.-K., 2010. "Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1531-1540.
    10. R. Huser & A. C. Davison, 2013. "Composite likelihood estimation for the Brown--Resnick process," Biometrika, Biometrika Trust, vol. 100(2), pages 511-518.
    11. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    12. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Zhen Wai Olivier & Dombry, Clément, 2019. "Simple models for multivariate regular variation and the Hüsler–Reiß Pareto distribution," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 525-550.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    2. Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
    3. Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    4. Koch, Erwan & Robert, Christian Y., 2022. "Stochastic derivative estimation for max-stable random fields," European Journal of Operational Research, Elsevier, vol. 302(2), pages 575-588.
    5. Krupskii, Pavel & Genton, Marc G., 2019. "A copula model for non-Gaussian multivariate spatial data," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 264-277.
    6. Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Hofert, Marius & Huser, Raphaël & Prasad, Avinash, 2018. "Hierarchical Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 195-211.
    8. Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
    9. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    10. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    11. Alexis Bienvenüe & Christian Y. Robert, 2017. "Likelihood Inference for Multivariate Extreme Value Distributions Whose Spectral Vectors have known Conditional Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 130-149, March.
    12. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    13. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    14. Qiurong Cui & Zhengjun Zhang, 2018. "Max-Linear Competing Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 62-74, January.
    15. Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2015. "Composite likelihood inference for hidden Markov models for dynamic networks," MPRA Paper 67242, University Library of Munich, Germany.
    16. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    17. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    18. M. Jones & Arthur Pewsey & Shogo Kato, 2015. "On a class of circulas: copulas for circular distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 843-862, October.
    19. David Walsh-Jones & Daniel Jones & Christoph Reisinger, 2014. "Modelling of dependence in high-dimensional financial time series by cluster-derived canonical vines," Papers 1411.4970, arXiv.org.
    20. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:163:y:2018:i:c:p:80-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.