Nonparametric variable selection and classification: The CATCH algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2013.10.024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gao, Jiti & Gijbels, Irène, 2008.
"Bandwidth Selection in Nonparametric Kernel Testing,"
Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1584-1594.
- Jiti Gao & Irene Gijbels, 2009. "Bandwidth Selection in Nonparametric Kernel Testing," School of Economics and Public Policy Working Papers 2009-01, University of Adelaide, School of Economics and Public Policy.
- Lin, D. Y. & Zeng, D., 2011. "Correcting for Population Stratification in Genomewide Association Studies," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 997-1008.
- Wang, Lifeng & Shen, Xiaotong, 2007. "On L1-Norm Multiclass Support Vector Machines: Methodology and Theory," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 583-594, June.
- Doksum, Kjell & Tang, Shijie & Tsui, Kam-Wah, 2008. "Nonparametric Variable Selection: The EARTH Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1609-1620.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
- Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014.
"Semiparametric methods in nonlinear time series analysis: a selective review,"
Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
- Patrick Saart & Jiti Gao, 2012. "Semiparametric Methods in Nonlinear Time Series Analysis: A Selective Review," Monash Econometrics and Business Statistics Working Papers 21/12, Monash University, Department of Econometrics and Business Statistics.
- Dong, Chaohua & Gao, Jiti & Tjøstheim, Dag & Yin, Jiying, 2017.
"Specification testing for nonlinear multivariate cointegrating regressions,"
Journal of Econometrics, Elsevier, vol. 200(1), pages 104-117.
- Chaohua Dong & Jiti Gao & Dag Tjostheim & Jiying Yin, 2014. "Specification Testing for Nonlinear Multivariate Cointegrating Regressions," Monash Econometrics and Business Statistics Working Papers 8/14, Monash University, Department of Econometrics and Business Statistics.
- Chaohua Dong & Jiti Gao & Dag Tjostheim & Jiying Yin, 2016. "Specification Testing for Nonlinear Multivariate Cointegrating Regressions," Monash Econometrics and Business Statistics Working Papers 14/16, Monash University, Department of Econometrics and Business Statistics.
- Sun, Zhihua & Ye, Xue & Sun, Liuquan, 2015. "Consistent test of error-in-variables partially linear model with auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 118-131.
- Weijia Jia & Weixing Song, 2018. "Goodness-of-fit tests in linear EV regression with replications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(4), pages 395-421, May.
- Bagkavos, Dimitrios & Patil, Prakash N. & Wood, Andrew T.A., 2023. "Nonparametric goodness-of-fit testing for a continuous multivariate parametric model," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- Jácome, M.A. & López-de-Ullibarri, I., 2016. "Bandwidth selection for the presmoothed logrank test," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 151-157.
- Xu, Ke-Li, 2013. "Powerful tests for structural changes in volatility," Journal of Econometrics, Elsevier, vol. 173(1), pages 126-142.
- Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
- Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011.
"Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
- Bouezmarni, Taoufik & Rombouts, Jeroen V. K., 2009. "A nonparametric copula based test for conditional independence with applications to granger causality," UC3M Working papers. Economics we093419, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Taoufik Bouezmarni & Jeroen Rombouts & Abderrahim Taamouti, 2009. "A Nonparametric Copula Based Test for Conditional Independence with Applications to Granger Causality," CIRANO Working Papers 2009s-28, CIRANO.
- BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen & TAAMOUTI, Abderrahim, 2009. "A nonparametric copula based test for conditional independence with applications to Granger causality," LIDAM Discussion Papers CORE 2009041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2009. "A Nonparametric Copula Based Test for Conditional Independence with Applications to Granger Causality," Cahiers de recherche 0927, CIRPEE.
- Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
- Bagkavos, D. & Patil, P.N., 2017. "A new test of independence for bivariate observations," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 117-133.
- Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
- Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
- Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
- Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2023.
"Optimal minimax rates of specification testing with data-driven bandwidth,"
Econometric Reviews, Taylor & Francis Journals, vol. 42(6), pages 487-512, June.
- Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2021. "Optimal Minimax Rates of Specification Testing with Data-driven Bandwidth," KIER Working Papers 1053, Kyoto University, Institute of Economic Research.
- Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
- Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017.
"A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
- Min Seong Kim & Yixiao Sun & Jingjing Yang, 2015. "A Fixed-bandwidth View of the Pre-asymptotic Inference for Kernel Smoothing with Time Series Data," Working Papers 049, Toronto Metropolitan University, Department of Economics.
- Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2016. "A Fixed-bandwidth View of the Pre-asymptotic Inference for Kernel Smoothing with Time Series Data," University of California at San Diego, Economics Working Paper Series qt2240n3n5, Department of Economics, UC San Diego.
- Chen, Bin & Huang, Liquan, 2018. "Nonparametric testing for smooth structural changes in panel data models," Journal of Econometrics, Elsevier, vol. 202(2), pages 245-267.
- Ling Peng & Xiaohui Liu & Xiangyong Tan & Yiweng Zhou & Shihua Luo, 2024. "The statistical rate for support matrix machines under low rankness and row (column) sparsity," Statistical Papers, Springer, vol. 65(7), pages 4567-4598, September.
More about this item
Keywords
Adaptive variable selection; Importance score; Chi-square statistic;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:158-175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.