IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v72y2014icp158-175.html
   My bibliography  Save this article

Nonparametric variable selection and classification: The CATCH algorithm

Author

Listed:
  • Tang, Shijie
  • Chen, Lisha
  • Tsui, Kam-Wah
  • Doksum, Kjell

Abstract

The problem of classifying a categorical response Y is considered in a nonparametric framework. The distribution of Y depends on a vector of predictors X, where the coordinates Xj of X may be continuous, discrete, or categorical. An algorithm is constructed to select the variables to be used for classification. For each variable Xj, an importance score sj is computed to measure the strength of association of Xj with Y. The algorithm deletes Xj if sj falls below a certain threshold. It is shown in Monte Carlo simulations that the algorithm has a high probability of only selecting variables associated with Y. Moreover when this variable selection rule is used for dimension reduction prior to applying classification procedures, it improves the performance of these procedures. The approach for computing importance scores is based on root Chi-square type statistics computed for randomly selected regions (tubes) of the sample space. The size and shape of the regions are adjusted iteratively and adaptively using the data to enhance the ability of the importance score to detect local relationships between the response and the predictors. These local scores are then averaged over the tubes to form a global importance score sj for variable Xj. When confounding and spurious associations are issues, the nonparametric importance score for variable Xj is computed conditionally by using tubes to restrict the other variables. This variable selection procedure is called CATCH (Categorical Adaptive Tube Covariate Hunting). Asymptotic properties, including consistency, are established.

Suggested Citation

  • Tang, Shijie & Chen, Lisha & Tsui, Kam-Wah & Doksum, Kjell, 2014. "Nonparametric variable selection and classification: The CATCH algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 158-175.
  • Handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:158-175
    DOI: 10.1016/j.csda.2013.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003782
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Jiti & Gijbels, Irène, 2008. "Bandwidth Selection in Nonparametric Kernel Testing," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1584-1594.
    2. Lin, D. Y. & Zeng, D., 2011. "Correcting for Population Stratification in Genomewide Association Studies," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 997-1008.
    3. Wang, Lifeng & Shen, Xiaotong, 2007. "On L1-Norm Multiclass Support Vector Machines: Methodology and Theory," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 583-594, June.
    4. Doksum, Kjell & Tang, Shijie & Tsui, Kam-Wah, 2008. "Nonparametric Variable Selection: The EARTH Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1609-1620.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    2. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    3. Dong, Chaohua & Gao, Jiti & Tjøstheim, Dag & Yin, Jiying, 2017. "Specification testing for nonlinear multivariate cointegrating regressions," Journal of Econometrics, Elsevier, vol. 200(1), pages 104-117.
    4. Sun, Zhihua & Ye, Xue & Sun, Liuquan, 2015. "Consistent test of error-in-variables partially linear model with auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 118-131.
    5. Weijia Jia & Weixing Song, 2018. "Goodness-of-fit tests in linear EV regression with replications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(4), pages 395-421, May.
    6. Bagkavos, Dimitrios & Patil, Prakash N. & Wood, Andrew T.A., 2023. "Nonparametric goodness-of-fit testing for a continuous multivariate parametric model," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    7. Jácome, M.A. & López-de-Ullibarri, I., 2016. "Bandwidth selection for the presmoothed logrank test," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 151-157.
    8. Xu, Ke-Li, 2013. "Powerful tests for structural changes in volatility," Journal of Econometrics, Elsevier, vol. 173(1), pages 126-142.
    9. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    10. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    11. Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
    12. Bagkavos, D. & Patil, P.N., 2017. "A new test of independence for bivariate observations," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 117-133.
    13. Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
    14. Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
    15. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    16. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2023. "Optimal minimax rates of specification testing with data-driven bandwidth," Econometric Reviews, Taylor & Francis Journals, vol. 42(6), pages 487-512, June.
    17. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    18. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    19. Chen, Bin & Huang, Liquan, 2018. "Nonparametric testing for smooth structural changes in panel data models," Journal of Econometrics, Elsevier, vol. 202(2), pages 245-267.
    20. Ling Peng & Xiaohui Liu & Xiangyong Tan & Yiweng Zhou & Shihua Luo, 2024. "The statistical rate for support matrix machines under low rankness and row (column) sparsity," Statistical Papers, Springer, vol. 65(7), pages 4567-4598, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:158-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.