IDEAS home Printed from https://ideas.repec.org/a/bcp/journl/v8y2024i6p1959-1970.html
   My bibliography  Save this article

Comparative Production of Selected High Value Crops Adopting Container Gardening

Author

Listed:
  • Edrhea Fhel S. Atanozo

    (Assumption College of Nabunturan, Nabunturan, Davao de Oro, Philippines)

  • Nycel Jhay C. Umpad

    (Assumption College of Nabunturan, Nabunturan, Davao de Oro, Philippines)

  • Maedel Joy V. Escote

    (Assumption College of Nabunturan, Nabunturan, Davao de Oro, Philippines)

Abstract

This study aimed to investigate the potential of container gardening to increase the yield of selected high-value crops and address food security amidst climate change. Specifically, the research focused on the production of grafted tomatoes onto eggplant, potatoes, and carrots using various soil media combinations and fertilizer applications. An experimental research methodology employing a Completely Randomized Design (CRD) was used. The study was conducted in Purok 3 Malinawon, Mawab, Davao de Oro, Philippines, spanning 165 days from September 29, 2023, to April 10, 2024. Five treatments with two replicates each were applied, involving different combinations of garden soil, vermicast, organic, and inorganic fertilizers. Data on the number and weight of harvested fruits and tubers were analyzed using ANOVA to compare production outputs across treatments. The findings indicated that the combination of 50% garden soil and 50% vermicast with inorganic fertilizers (Treatment 4) yielded the highest production for both grafted tomatoes and carrots. Specifically, Treatment 4 resulted in the highest number and weight of fruits for grafted tomatoes and the highest number and weight of tubers for carrots. However, no tuber development was observed for potatoes under any treatment, highlighting the need for optimized growing conditions for this crop in container gardening. However, while container gardening showed significant potential for improving the yield of grafted tomatoes and carrots, the economic viability requires scaling up the number of containers used per cycle. Based on sample cost and income calculation, to recover production costs and ensure profitability, planting bags should be more than 5 for eggplant, 6 for tomato, and 3 for carrots per planting cycle in 4-5 months. Therefore, the more bags planted using treatment 4, the greater the potential to enhance productivity and generate more income. Overall, this study offers significant perspectives on using container gardening as an alternate farming method.

Suggested Citation

  • Edrhea Fhel S. Atanozo & Nycel Jhay C. Umpad & Maedel Joy V. Escote, 2024. "Comparative Production of Selected High Value Crops Adopting Container Gardening," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 1959-1970, June.
  • Handle: RePEc:bcp:journl:v:8:y:2024:i:6:p:1959-1970
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijriss/Digital-Library/volume-8-issue-6/1959-1970.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijriss/articles/comparative-production-of-selected-high-value-crops-adopting-container-gardening/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Hasnain & Jiawei Chen & Nazeer Ahmed & Shumaila Memon & Lei Wang & Yimei Wang & Ping Wang, 2020. "The Effects of Fertilizer Type and Application Time on Soil Properties, Plant Traits, Yield and Quality of Tomato," Sustainability, MDPI, vol. 12(21), pages 1-14, October.
    2. Pavel Krasilnikov & Miguel Angel Taboada & Amanullah, 2022. "Fertilizer Use, Soil Health and Agricultural Sustainability," Agriculture, MDPI, vol. 12(4), pages 1-5, March.
    3. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    4. Lian-Jie Wan & Yang Tian & Man He & Yong-Qiang Zheng & Qiang Lyu & Rang-Jin Xie & Yan-Yan Ma & Lie Deng & Shi-Lai Yi, 2021. "Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield," Agriculture, MDPI, vol. 11(12), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    4. Fatma Bibi & Asifa Hameed & Noor Muhammad & Khurram Shahzad & Iftikhar Ahmad & Tawaf Ali Shah & Abdel-Rhman Z. Gaafar & Mohamed S. Hodhod & Mohammed Bourhia & Hiba-Allah Nafidi, 2023. "Potential of Integrated Nutrient Management to Rehabilitate the Dieback-Affected Mango Cultivar Sammer Bahisht Chaunsa," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    5. Nasser Al-Suhaibani & Mostafa Selim & Ali Alderfasi & Salah El-Hendawy, 2021. "Integrated Application of Composted Agricultural Wastes, Chemical Fertilizers and Biofertilizers as an Avenue to Promote Growth, Yield and Quality of Maize in an Arid Agro-Ecosystem," Sustainability, MDPI, vol. 13(13), pages 1-26, July.
    6. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    7. Michal Kraus & Kateřina Žáková & Jaroslav Žák, 2020. "Biochar for Vertical Greenery Systems," Energies, MDPI, vol. 13(23), pages 1-13, November.
    8. Yasser Jezzini & Ghiwa Assaf & Rayan H. Assaad, 2023. "Models and Methods for Quantifying the Environmental, Economic, and Social Benefits and Challenges of Green Infrastructure: A Critical Review," Sustainability, MDPI, vol. 15(9), pages 1-40, May.
    9. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    10. Christine Bertram & Jan Goebel & Christian Krekel & Katrin Rehdanz, 2022. "Urban Land Use Fragmentation and Human Well-Being," Land Economics, University of Wisconsin Press, vol. 98(2), pages 399-420.
    11. Pavel Krasilnikov & Miguel Angel Taboada & Amanullah, 2022. "Fertilizer Use, Soil Health and Agricultural Sustainability," Agriculture, MDPI, vol. 12(4), pages 1-5, March.
    12. Katia Perini & Fabio Magrassi & Andrea Giachetta & Luca Moreschi & Michela Gallo & Adriana Del Borghi, 2021. "Environmental Sustainability of Building Retrofit through Vertical Greening Systems: A Life-Cycle Approach," Sustainability, MDPI, vol. 13(9), pages 1-13, April.
    13. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    14. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    15. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Peter Juras & Pavol Durica, 2022. "Measurement of the Green Façade Prototype in a Climate Chamber: Impact of Watering Regime on the Surface Temperatures," Energies, MDPI, vol. 15(7), pages 1-14, March.
    17. Stephen Okiemute Akpasi & Kigho Moses Oghenejoboh & Hassan Oriyomi Shoyiga & Sammy Lewis Kiambi & Thembisile Patience Mahlangu, 2023. "Investigation of the Nutrient Composition of Fluted Pumpkin ( Telfairia occidentalis ) under Herbicide Treatment," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    18. Margarita-Niki Assimakopoulos & Rosa Francesca De Masi & Filippo de Rossi & Dimitra Papadaki & Silvia Ruggiero, 2020. "Green Wall Design Approach Towards Energy Performance and Indoor Comfort Improvement: A Case Study in Athens," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    19. Felicia Cheţan & Teodor Rusu & Roxana Elena Călugăr & Cornel Chețan & Alina Şimon & Adrian Ceclan & Marius Bărdaș & Olimpia Smaranda Mintaș, 2022. "Research on the Interdependence Linkages between Soil Tillage Systems and Climate Factors on Maize Crop," Land, MDPI, vol. 11(10), pages 1-14, October.
    20. Luis Pérez-Urrestarazu & Rafael Fernández-Cañero & Antonio Franco-Salas & Gregorio Egea, 2015. "Vertical Greening Systems and Sustainable Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(4), pages 65-85, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcp:journl:v:8:y:2024:i:6:p:1959-1970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://rsisinternational.org/journals/ijriss/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.