IDEAS home Printed from https://ideas.repec.org/a/bcp/journl/v8y2024i10p150-158.html
   My bibliography  Save this article

Artificial Intelligence Adoption in the Manufacturing Sector: Challenges and Strategic Framework

Author

Listed:
  • Muhammad Yusuf Bin Masod

    (Department of Printing Technology, College of Creative Arts, UiTM Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia)

  • Siti Farhana Zakaria

    (Department of Printing Technology, College of Creative Arts, UiTM Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia)

Abstract

In today’s competitive business landscape, manufacturing organizations are increasingly recognizing the potential of artificial intelligence (AI) to enhance productivity, efficiency, and cost-effectiveness. Despite AI’s transformative applications across various sectors, its adoption within the manufacturing industry remains underexplored, with many firms facing unique challenges such as organizational complexity, legacy systems, and a shortage of specialized digital skills. This study conducts a comprehensive literature review to identify the key factors influencing AI adoption in manufacturing, categorizing them into technological, organizational, and external dimensions. Technological factors include perceived benefits, system compatibility, data quality, cost and IT infrastructure, while organizational factors encompass top management support, employee competencies, and organizational readiness. External influences involve government regulations, competitive pressures, and vendor support. By synthesizing findings from multiple empirical studies, we develop a conceptual framework based on the Technology-Organization-Environment (TOE) model, highlighting how these dimensions interact to shape AI adoption decisions. The proposed framework highlights the critical role of leadership commitment, strategic alignment of AI initiatives, and the necessity for robust technological infrastructure. It also emphasizes the impact of external factors such as supportive government policies and market competitiveness on accelerating AI integration. The study’s implications are significant for academics seeking to fill research gaps, industry practitioners aiming for successful AI implementation, and policymakers interested in fostering an environment conducive to technological advancement. While the framework offers a structured approach to understanding AI adoption in manufacturing, the study acknowledges the need for empirical validation. Future research should test the framework across different manufacturing sectors and regions to account for industry-specific factors and regional variations. By addressing these areas, organizations can better navigate the complexities of AI adoption, enhancing competitiveness and innovation in the manufacturing sector.

Suggested Citation

  • Muhammad Yusuf Bin Masod & Siti Farhana Zakaria, 2024. "Artificial Intelligence Adoption in the Manufacturing Sector: Challenges and Strategic Framework," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(10), pages 150-158, October.
  • Handle: RePEc:bcp:journl:v:8:y:2024:i:10:p:150-158
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijriss/Digital-Library/volume-8-issue-10/150-158.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijriss/articles/artificial-intelligence-adoption-in-the-manufacturing-sector-challenges-and-strategic-framework/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dwivedi, Yogesh K. & Hughes, Laurie & Ismagilova, Elvira & Aarts, Gert & Coombs, Crispin & Crick, Tom & Duan, Yanqing & Dwivedi, Rohita & Edwards, John & Eirug, Aled & Galanos, Vassilis & Ilavarasan, , 2021. "Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy," International Journal of Information Management, Elsevier, vol. 57(C).
    2. Erlane K Ghani & Nurshahiirah Ariffin & Citra Sukmadilaga, 2022. "Factors Influencing Artificial Intelligence Adoption in Publicly Listed Manufacturing Companies: A Technology, Organisation, and Environment Approach," International Journal of Applied Economics, Finance and Accounting, Online Academic Press, vol. 14(2), pages 108-117.
    3. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    4. Kinkel, Steffen & Baumgartner, Marco & Cherubini, Enrica, 2022. "Prerequisites for the adoption of AI technologies in manufacturing – Evidence from a worldwide sample of manufacturing companies," Technovation, Elsevier, vol. 110(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dr Ummi Farhani binti Firdaus & Nurul Aqmal bin Roslan & W Fatimah Hanun binti Wan Mohamad Saferdin & Izyan Farhana binti Zulkarnain & Nur Farhani binti Samasu, 2024. "AI Integration in Malaysian Public Administration for Improved Governance," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(9), pages 3799-3812, September.
    2. Alessia Lo Turco & Alessandro Sterlacchini, 2024. "Factors Enhancing Ai Adoption By Firms. Evidence From France," Working Papers 486, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    3. Sundberg, Leif & Holmström, Jonny, 2023. "Democratizing artificial intelligence: How no-code AI can leverage machine learning operations," Business Horizons, Elsevier, vol. 66(6), pages 777-788.
    4. Jacques Bughin, 2024. "The Role of Firm AI Capabilities in Generative AI-pair Coding," Working Papers TIMES² 2024-076, ULB -- Universite Libre de Bruxelles.
    5. Samuel Muehlemann, 2024. "AI Adoption and Workplace Training," Economics of Education Working Paper Series 0232, University of Zurich, Department of Business Administration (IBW).
    6. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    7. Erdsiek, Daniel & Rost, Vincent, 2022. "Datenbewirtschaftung in deutschen Unternehmen: Umfrageergebnisse zu Status-quo und mittelfristigem Ausblick," ZEW Expert Briefs 22-09, ZEW - Leibniz Centre for European Economic Research.
    8. Woszczyna Karolina & Mania Karolina, 2023. "The European map of artificial intelligence development policies: a comparative analysis," International Journal of Contemporary Management, Sciendo, vol. 59(3), pages 78-87, September.
    9. Chen, Pengyu & Chu, Zhongzhu & Zhao, Miao, 2024. "The Road to corporate sustainability: The importance of artificial intelligence," Technology in Society, Elsevier, vol. 76(C).
    10. Yi Sun & Shihui Li & Lingling Yu, 2022. "The dark sides of AI personal assistant: effects of service failure on user continuance intention," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 17-39, March.
    11. Dirk Czarnitzki & Malte Prüfer, 2024. "The Interplay between Public Procurement of Innovation and R&D Grants: Empirical Evidence from Belgium," Working Papers of ECOOM - Centre for Research and Development Monitoring 746875, KU Leuven, Faculty of Economics and Business (FEB), ECOOM - Centre for Research and Development Monitoring.
    12. Byung-Jik Kim & Julak Lee, 2024. "The mental health implications of artificial intelligence adoption: the crucial role of self-efficacy," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    13. Zhang, Chi & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhu, Wenjin, 2024. "A dynamic resilience evaluation method for cross-domain swarms in confrontation," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Capestro, Mauro & Rizzo, Cristian & Kliestik, Tomas & Peluso, Alessandro M. & Pino, Giovanni, 2024. "Enabling digital technologies adoption in industrial districts: The key role of trust and knowledge sharing," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    15. Rammer, Christian & Doherr, Thorsten & Kinne, Jan & Lenz, David, 2024. "KI-Einsatz in Unternehmen in Deutschland: Strategische Ausrichtung und internationale Position," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 303033, March.
    16. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    17. Dhiman, Neeraj & Jamwal, Mohit & Kumar, Ajay, 2023. "Enhancing value in customer journey by considering the (ad)option of artificial intelligence tools," Journal of Business Research, Elsevier, vol. 167(C).
    18. Simón, Cristina & Revilla, Elena & Jesús Sáenz, Maria, 2024. "Integrating AI in organizations for value creation through Human-AI teaming: A dynamic-capabilities approach," Journal of Business Research, Elsevier, vol. 182(C).
    19. Dwivedi, Yogesh K. & Hughes, Laurie & Kar, Arpan Kumar & Baabdullah, Abdullah M. & Grover, Purva & Abbas, Roba & Andreini, Daniela & Abumoghli, Iyad & Barlette, Yves & Bunker, Deborah & Chandra Kruse,, 2022. "Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action," International Journal of Information Management, Elsevier, vol. 63(C).
    20. Vijay Prakash Sharma & Surya Prakash & Ranbir Singh, 2022. "What Prevents Sustainable Last-Mile Delivery in Industry 4.0? An Analysis and Decision Framework," Sustainability, MDPI, vol. 14(24), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcp:journl:v:8:y:2024:i:10:p:150-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://rsisinternational.org/journals/ijriss/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.