Deep Growth-at-Risk Model: Nowcasting the 2020 Pandemic Lockdown Recession in Small Open Economies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008.
"Are output growth-rate distributions fat-tailed? some evidence from OECD countries,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2006. "Are Output Growth-Rate Distributions Fat-Tailed? Some Evidence from OECD Countries," LEM Papers Series 2006/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Post-Print hal-03417062, HAL.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2006. "Are output growth-rate distributions fat-tailed? Some evidence from OECD countries," SciencePo Working papers Main hal-01065643, HAL.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2006. "Are output growth-rate distributions fat-tailed? Some evidence from OECD countries," Working Papers hal-01065643, HAL.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2006. "Are Output Growth-Rate Distributions Fat-Tailed? Some Evidence from OECD Countries," Working Papers 36/2006, University of Verona, Department of Economics.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," SciencePo Working papers Main hal-03417062, HAL.
- Ms. Wenjie Chen & Mr. Mico Mrkaic & Mr. Malhar S Nabar, 2019. "The Global Economic Recovery 10 Years After the 2008 Financial Crisis," IMF Working Papers 2019/083, International Monetary Fund.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Tilmann Gneiting, 2008. "Editorial: Probabilistic forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 319-321, April.
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Altunbas, Yener & Manganelli, Simone & Marques-Ibanez, David, 2017.
"Realized bank risk during the great recession,"
Journal of Financial Intermediation, Elsevier, vol. 32(C), pages 29-44.
- Yener Altunbas & Simone Manganelli & David Marques-Ibanez, 2015. "Realized Bank Risk during the Great Recession," International Finance Discussion Papers 1140, Board of Governors of the Federal Reserve System (U.S.).
- Mr. Ananthakrishnan Prasad & Mr. Selim A Elekdag & Mr. Phakawa Jeasakul & Romain Lafarguette & Mr. Adrian Alter & Alan Xiaochen Feng & Changchun Wang, 2019. "Growth at Risk: Concept and Application in IMF Country Surveillance," IMF Working Papers 2019/036, International Monetary Fund.
- Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
- Figueres, Juan Manuel & Jarociński, Marek, 2020.
"Vulnerable growth in the euro area: Measuring the financial conditions,"
Economics Letters, Elsevier, vol. 191(C).
- Figueres, Juan Manuel & Jarociński, Marek, 2020. "Vulnerable growth in the Euro Area: Measuring the financial conditions," Working Paper Series 2458, European Central Bank.
- Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024.
"Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," Working Papers 20-02R, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," CEPR Discussion Papers 17512, C.E.P.R. Discussion Papers.
- De Santis, Roberto A. & Van der Veken, Wouter, 2020. "Forecasting macroeconomic risk in real time: Great and Covid-19 Recessions," Working Paper Series 2436, European Central Bank.
- Brownlees, Christian & Souza, André B.M., 2021. "Backtesting global Growth-at-Risk," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 312-330.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- Makridakis, Spyros & Hogarth, Robin M. & Gaba, Anil, 2009. "Forecasting and uncertainty in the economic and business world," International Journal of Forecasting, Elsevier, vol. 25(4), pages 794-812, October.
- M. C. Jones & Arthur Pewsey, 2009. "Sinh-arcsinh distributions," Biometrika, Biometrika Trust, vol. 96(4), pages 761-780.
- Thomas R. Cook & Aaron Smalter Hall, 2017.
"Macroeconomic Indicator Forecasting with Deep Neural Networks,"
Research Working Paper
RWP 17-11, Federal Reserve Bank of Kansas City.
- Thomas Cook, 2019. "Macroeconomic Indicator Forecasting with Deep Neural Networks," 2019 Meeting Papers 402, Society for Economic Dynamics.
- Nigel Pain & Christine Lewis & Thai-Thanh Dang & Yosuke Jin & Pete Richardson, 2014. "OECD Forecasts During and After the Financial Crisis: A Post Mortem," OECD Economics Department Working Papers 1107, OECD Publishing.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Zidong An & João Tovar Jalles & Prakash Loungani, 2018.
"How well do economists forecast recessions?,"
International Finance, Wiley Blackwell, vol. 21(2), pages 100-121, June.
- Zidong An & João Tovar Jalles & Mr. Prakash Loungani, 2018. "How Well Do Economists Forecast Recessions?," IMF Working Papers 2018/039, International Monetary Fund.
- Iseringhausen, Martin, 2024.
"A time-varying skewness model for Growth-at-Risk,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
- Martin Iseringhausen, 2021. "A time-varying skewness model for Growth-at-Risk," Working Papers 49, European Stability Mechanism.
- Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016.
"Systemic risk and the macroeconomy: An empirical evaluation,"
Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
- Stefano Giglio & Bryan T. Kelly & Seth Pruitt, 2015. "Systemic Risk and the Macroeconomy: An Empirical Evaluation," NBER Working Papers 20963, National Bureau of Economic Research, Inc.
- Christine Lewis & Nigel Pain, 2014. "Lessons from OECD forecasts during and after the financial crisis," OECD Journal: Economic Studies, OECD Publishing, vol. 2014(1), pages 9-39.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021.
"The time-varying risk of Italian GDP,"
Economic Modelling, Elsevier, vol. 101(C).
- Fabio Busetti & Michele Caivano & Davide Delle Monache & Claudia Pacella, 2020. "The time-varying risk of Italian GDP," Temi di discussione (Economic working papers) 1288, Bank of Italy, Economic Research and International Relations Area.
- James Mitchell & Aubrey Poon & Dan Zhu, 2024.
"Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
- James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
- Iseringhausen, Martin, 2024.
"A time-varying skewness model for Growth-at-Risk,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
- Martin Iseringhausen, 2021. "A time-varying skewness model for Growth-at-Risk," Working Papers 49, European Stability Mechanism.
- Szendrei, Tibor & Varga, Katalin, 2023. "Revisiting vulnerable growth in the Euro Area: Identifying the role of financial conditions in the distribution," Economics Letters, Elsevier, vol. 223(C).
- Stolbov, Mikhail & Shchepeleva, Maria, 2022. "Modeling global real economic activity: Evidence from variable selection across quantiles," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
- Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022.
"High-frequency monitoring of growth at risk,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
- Laurent Ferrara & Matteo Mogliani & Jean-Guillaume Sahuc, 2020. "High-frequency monitoring of growth-at-risk," CAMA Working Papers 2020-97, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jean-Guillaume Sahuc & Matteo Mogliani & Laurent Ferrara, 2022. "High-frequency monitoring of growth at risk," Post-Print hal-03361425, HAL.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
- Wolf, Elias, 2022. "Estimating growth at risk with skewed stochastic volatility models," Discussion Papers 2022/2, Free University Berlin, School of Business & Economics.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
- Lang, Jan Hannes & Rusnák, Marek & Greiwe, Moritz, 2023. "Medium-term growth-at-risk in the euro area," Working Paper Series 2808, European Central Bank.
- Schick, Manuel, 2024. "Real-time Nowcasting Growth-at-Risk using the Survey of Professional Forecasters," Working Papers 0750, University of Heidelberg, Department of Economics.
- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- De Santis, Roberto A. & Van der Veken, Wouter, 2020. "Forecasting macroeconomic risk in real time: Great and Covid-19 Recessions," Working Paper Series 2436, European Central Bank.
- Xu, Qifa & Xu, Mengnan & Jiang, Cuixia & Fu, Weizhong, 2023. "Mixed-frequency Growth-at-Risk with the MIDAS-QR method: Evidence from China," Economic Systems, Elsevier, vol. 47(4).
- Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2021.
"Expecting the unexpected: economic growth under stress,"
Working Papers
202106, University of California at Riverside, Department of Economics.
- Gonzalez Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2021. "Expecting the unexpected: economic growth under stress," DES - Working Papers. Statistics and Econometrics. WS 32148, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Gloria González-Rivera & Carlos Vladimir Rodríguez-Caballero & Esther Ruiz Ortega, 2021. "Expecting the unexpected: economic growth under stress," CREATES Research Papers 2021-06, Department of Economics and Business Economics, Aarhus University.
- Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023.
"Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.
- Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang & Österholm, Pär, 2021. "Modelling the Relation between the US Real Economy and the Corporate Bond-Yield Spread in Bayesian VARs with non-Gaussian Disturbances," Working Papers 2021:9, Örebro University, School of Business.
- Simon Lloyd & Ed Manuel & Konstantin Panchev, 2024.
"Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk,"
IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(1), pages 335-392, March.
- Lloyd, Simon & Manuel, Ed & Panchev, Konstantin, 2021. "Foreign vulnerabilities, domestic risks: the global drivers of GDP-at-Risk," Bank of England working papers 940, Bank of England.
- Lloyd, S. & Manuel, E. & Panchev, K., 2021. "Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk," Cambridge Working Papers in Economics 2156, Faculty of Economics, University of Cambridge.
- Lloyd, S. & Manuel, E. & Panchev, K., 2021. "Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk," Janeway Institute Working Papers 2102, Faculty of Economics, University of Cambridge.
- Tamás Kiss & Hoang Nguyen & Pär Österholm, 2021.
"Modelling Returns in US Housing Prices—You’re the One for Me, Fat Tails,"
JRFM, MDPI, vol. 14(11), pages 1-17, October.
- Kiss, Tamás & Nguyen, Hoang & Österholm, Pär, 2020. "Modelling Returns in US Housing Prices – You’re the One for Me, Fat Tails," Working Papers 2020:13, Örebro University, School of Business.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2012.
"Constructing Density Forecasts from Quantile Regressions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
More about this item
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bas:econst:y:2022:i:7:p:20-41. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Diana Dimitrova (email available below). General contact details of provider: https://edirc.repec.org/data/ikbasbg.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.