IDEAS home Printed from https://ideas.repec.org/a/bla/intfin/v21y2018i2p100-121.html
   My bibliography  Save this article

How well do economists forecast recessions?

Author

Listed:
  • Zidong An
  • João Tovar Jalles
  • Prakash Loungani

Abstract

We describe the evolution of forecasts in the run‐up to recessions. The GDP forecasts cover 63 countries for the years 1992–2014. The main finding is that, while forecasters are generally aware that recession years will be different from other years, they miss the magnitude of the recession by a wide margin until the year is almost over. Forecasts during non‐recession years are revised slowly; in recession years, the pace of revision picks up but not sufficiently to avoid large forecast errors. Our second finding is that forecasts of the private sector and the official sector are virtually identical; thus, both are equally good at missing recessions. Strong booms are also missed, providing suggestive evidence for Nordhaus' view that behavioural factors—the reluctance to absorb either good or bad news—play a role in the evolution of forecasts.

Suggested Citation

  • Zidong An & João Tovar Jalles & Prakash Loungani, 2018. "How well do economists forecast recessions?," International Finance, Wiley Blackwell, vol. 21(2), pages 100-121, June.
  • Handle: RePEc:bla:intfin:v:21:y:2018:i:2:p:100-121
    DOI: 10.1111/infi.12130
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/infi.12130
    Download Restriction: no

    File URL: https://libkey.io/10.1111/infi.12130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    2. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    3. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    4. Fintzen, David & Stekler, H. O., 1999. "Why did forecasters fail to predict the 1990 recession?," International Journal of Forecasting, Elsevier, vol. 15(3), pages 309-323, July.
    5. Loungani, Prakash & Stekler, Herman & Tamirisa, Natalia, 2013. "Information rigidity in growth forecasts: Some cross-country evidence," International Journal of Forecasting, Elsevier, vol. 29(4), pages 605-621.
    6. Loungani, Prakash, 2001. "How accurate are private sector forecasts? Cross-country evidence from consensus forecasts of output growth," International Journal of Forecasting, Elsevier, vol. 17(3), pages 419-432.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    9. Victor Zarnowitz, 1991. "Has Macro-Forecasting Failed?," NBER Working Papers 3867, National Bureau of Economic Research, Inc.
    10. Mr. Fabian Valencia & Mr. Luc Laeven, 2008. "Systemic Banking Crises: A New Database," IMF Working Papers 2008/224, International Monetary Fund.
    11. Roy Batchelor & Pami Dua, 1995. "Forecaster Diversity and the Benefits of Combining Forecasts," Management Science, INFORMS, vol. 41(1), pages 68-75, January.
    12. Sims, Christopher A., 2010. "Rational Inattention and Monetary Economics," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 4, pages 155-181, Elsevier.
    13. Dovern, Jonas, 2013. "When are GDP forecasts updated? Evidence from a large international panel," Economics Letters, Elsevier, vol. 120(3), pages 521-524.
    14. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    15. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    16. Christine Lewis & Nigel Pain, 2014. "Lessons from OECD forecasts during and after the financial crisis," OECD Journal: Economic Studies, OECD Publishing, vol. 2014(1), pages 9-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin Zhang & He Ni & Hao Xu, 2023. "Forecasting models for the Chinese macroeconomy in a data‐rich environment: Evidence from large dimensional approximate factor models with mixed‐frequency data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 719-767, March.
    2. Marco Hoeberichts & Jan Willem van den End, 2024. "Detecting turning points in the inflation cycle," Working Papers 808, DNB.
    3. Petr Polak & Jiri Panos, 2019. "The Impact of Expectations on IFRS 9 Loan Loss Provisions," Research and Policy Notes 2019/03, Czech National Bank.
    4. Suarez, Javier & ,, 2018. "The Procyclicality of Expected Credit Loss Provisions," CEPR Discussion Papers 13135, C.E.P.R. Discussion Papers.
    5. An, Zidong & Zheng, Xinye, 2023. "Diligent forecasters can make accurate predictions despite disagreeing with the consensus," Economic Modelling, Elsevier, vol. 125(C).
    6. Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An Extended Markov-Switching Dynamic Factor Model," Working Papers halshs-02443364, HAL.
    7. Qiu, Yajie & Deschamps, Bruno & Liu, Xiaoquan, 2024. "Uncertainty and macroeconomic forecasts: Evidence from survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 463-480.
    8. Teng, Bin & Wang, Sicong & Shi, Yufeng & Sun, Yunchuan & Wang, Wei & Hu, Wentao & Shi, Chaojun, 2022. "Economic recovery forecasts under impacts of COVID-19," Economic Modelling, Elsevier, vol. 110(C).
    9. Rybacki, Jakub & Gniazdowski, Michał, 2021. "Macroeconomic Forecasting in Poland: Lessons From the COVID-19 Outbreak," MPRA Paper 107682, University Library of Munich, Germany.
    10. An, Zidong & Liu, Dingqian & Wu, Yuzheng, 2021. "Expectation formation following pandemic events," Economics Letters, Elsevier, vol. 200(C).
    11. Guénette, Justin Damien & Kose, M. Ayhan & Sugawara, Naotaka, 2022. "Is a Global Recession Imminent?," MPRA Paper 114627, University Library of Munich, Germany.
    12. Ines Fortin & Sebastian P. Koch & Klaus Weyerstrass, 2020. "Evaluation of economic forecasts for Austria," Empirical Economics, Springer, vol. 58(1), pages 107-137, January.
    13. Filip Bašić & Tomislav Globan, 2023. "Early bird catches the worm: finding the most effective early warning indicators of recessions," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 36(1), pages 2120040-212, December.
    14. Kollar, Miroslav & Schmieder, Christian, 2019. "Macro-based asset allocation: An empirical analysis," EIB Working Papers 2019/11, European Investment Bank (EIB).
    15. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Facing Economic Shifts, Climate Change and Evolving Pandemics," Econometrics, MDPI, vol. 10(1), pages 1-21, December.
    16. Jakub Rybacki & Michał Gniazdowski, 2023. "Macroeconomic forecasting in Poland: lessons from the external shocks," Bank i Kredyt, Narodowy Bank Polski, vol. 54(1), pages 45-64.
    17. Michael Walton, 2023. "Adaptive Evaluation: A Complexity-Based Approach to Systematic Learning for Innovation and Scaling in Development," CID Working Papers 428, Center for International Development at Harvard University.
    18. Ulrich Fritsche & Johannes Puckelwald, 2018. "Deciphering Professional Forecasters’ Stories - Analyzing a Corpus of Textual Predictions for the German Economy," Macroeconomics and Finance Series 201804, University of Hamburg, Department of Socioeconomics.
    19. Pawel Dlotko & Simon Rudkin, 2019. "The Topology of Time Series: Improving Recession Forecasting from Yield Spreads," Working Papers 2019-02, Swansea University, School of Management.
    20. Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
    21. Gatti, Roberta & Lederman, Daniel & Islam, Asif M. & Nguyen, Ha & Lotfi, Rana & Emam Mousa, Mennatallah, 2024. "Data transparency and GDP growth forecast errors," Journal of International Money and Finance, Elsevier, vol. 140(C).
    22. Mihail Yanchev, 2022. "Deep Growth-at-Risk Model: Nowcasting the 2020 Pandemic Lockdown Recession in Small Open Economies," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 7, pages 20-41.
    23. Zidong An & Joao Tovar Jalles, 2020. "On the performance of US fiscal forecasts: government vs. private information," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 48(2), pages 367-391, June.
    24. Julia Estefania‐Flores & Davide Furceri & Siddharth Kothari & Jonathan D. Ostry, 2023. "Worse than you think: Public debt forecast errors in advanced and developing economies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 685-714, April.
    25. Yan Carrière-Swallow & José Marzluf, 2023. "Macrofinancial Causes of Optimism in Growth Forecasts," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 509-537, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    2. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    3. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. Strunz, Franziska & Gödl, Maximilian, 2023. "An Evaluation of Professional Forecasts for the German Economy," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277707, Verein für Socialpolitik / German Economic Association.
    5. Loungani, Prakash & Stekler, Herman & Tamirisa, Natalia, 2013. "Information rigidity in growth forecasts: Some cross-country evidence," International Journal of Forecasting, Elsevier, vol. 29(4), pages 605-621.
    6. Jalles, João Tovar & Karibzhanov, Iskander & Loungani, Prakash, 2015. "Cross-country evidence on the quality of private sector fiscal forecasts," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 186-201.
    7. Joao Tovar Jalles, 2015. "How Quickly is News Incorporated in Fiscal Forecasts?," Economics Bulletin, AccessEcon, vol. 35(4), pages 2802-2812.
    8. Jalles, João Tovar, 2017. "On the rationality and efficiency of inflation forecasts: Evidence from advanced and emerging market economies," Research in International Business and Finance, Elsevier, vol. 40(C), pages 175-189.
    9. Yoichi Tsuchiya, 2024. "Conservatism and information rigidity of the European Bank for Reconstruction and Development's growth forecast: Quarter‐century assessment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1399-1421, August.
    10. Jonas Dovern & Mr. Ulrich Fritsche & Mr. Prakash Loungani & Ms. Natalia T. Tamirisa, 2013. "Information Rigidities in Economic Growth Forecasts: Evidence from a Large International Panel," IMF Working Papers 2013/056, International Monetary Fund.
    11. Vereda, Luciano & Savignon, João & Gouveia da Silva, Tarciso, 2021. "A new method to assess the degree of information rigidity using fixed-event forecasts," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1576-1589.
    12. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    13. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    14. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    15. de Mendonça, Helder Ferreira & Vereda, Luciano & Araujo, Mateus de Azevedo, 2022. "What type of information calls the attention of forecasters? Evidence from survey data in an emerging market," Journal of International Money and Finance, Elsevier, vol. 129(C).
    16. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
    17. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    18. Yingying Xu & Zhixin Liu & Zichao Jia & Chi-Wei Su, 2017. "Is time-variant information stickiness state-dependent?," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(3), pages 169-187, December.
    19. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    20. Messina, Jeffrey D. & Sinclair, Tara M. & Stekler, Herman, 2015. "What can we learn from revisions to the Greenbook forecasts?," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 54-62.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:intfin:v:21:y:2018:i:2:p:100-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1367-0271 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.