Impact of Hybrid Intelligent Computing in Identifying Constructive Weather Parameters for Modeling Effective Rainfall Prediction
Author
Abstract
Suggested Citation
DOI: 10.22004/ag.econ.231944
Download full text from publisher
References listed on IDEAS
- Raza, Muhammad Qamar & Khosravi, Abbas, 2015. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1352-1372.
- Sudha, M. & Valarmathi, B., 2014. "Rainfall Forecast Analysis using Rough Set Attribute Reduction and Data Mining Methods," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 6(4), pages 1-10, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sudha, M. & Subbu, K., 2017. "Statistical Feature Ranking and Fuzzy Supervised Learning Approach in Modeling Regional Rainfall Prediction Systems," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 9(2), June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Marta P. Fernandes & Joaquim L. Viegas & Susana M. Vieira & João M. C. Sousa, 2017. "Segmentation of Residential Gas Consumers Using Clustering Analysis," Energies, MDPI, vol. 10(12), pages 1-26, December.
- Brucke, Karoline & Arens, Stefan & Telle, Jan-Simon & Steens, Thomas & Hanke, Benedikt & von Maydell, Karsten & Agert, Carsten, 2021. "A non-intrusive load monitoring approach for very short-term power predictions in commercial buildings," Applied Energy, Elsevier, vol. 292(C).
- Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
- Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
- A. Bassam & O. May Tzuc & M. Escalante Soberanis & L. J. Ricalde & B. Cruz, 2017. "Temperature Estimation for Photovoltaic Array Using an Adaptive Neuro Fuzzy Inference System," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
- Vogler–Finck, P.J.C. & Bacher, P. & Madsen, H., 2017. "Online short-term forecast of greenhouse heat load using a weather forecast service," Applied Energy, Elsevier, vol. 205(C), pages 1298-1310.
- Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Shah, Ibrar Ali & Khan, Farrukh Aslam & Derhab, Abdelouahid, 2021. "A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid," Applied Energy, Elsevier, vol. 299(C).
- Andrés Camero & Gabriel Luque & Yesnier Bravo & Enrique Alba, 2018. "Customer Segmentation Based on the Electricity Demand Signature: The Andalusian Case," Energies, MDPI, vol. 11(7), pages 1-14, July.
- V. Y. Kondaiah & B. Saravanan, 2022. "Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method," Energies, MDPI, vol. 15(14), pages 1-17, July.
- Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
- Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
- Bedi, Jatin & Toshniwal, Durga, 2021. "Can electricity demand lead to air pollution? A spatio-temporal analysis of electricity demand with climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
- Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
- Chen, Yibo & Tan, Hongwei, 2017. "Short-term prediction of electric demand in building sector via hybrid support vector regression," Applied Energy, Elsevier, vol. 204(C), pages 1363-1374.
- Zhaorui Meng & Xianze Xu, 2019. "A Hybrid Short-Term Load Forecasting Framework with an Attention-Based Encoder–Decoder Network Based on Seasonal and Trend Adjustment," Energies, MDPI, vol. 12(24), pages 1-14, December.
- Raza, Muhammad Qamar & Nadarajah, Mithulananthan & Ekanayake, Chandima, 2017. "Demand forecast of PV integrated bioclimatic buildings using ensemble framework," Applied Energy, Elsevier, vol. 208(C), pages 1626-1638.
More about this item
Keywords
Community/Rural/Urban Development; Crop Production/Industries; Research Methods/Statistical Methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aolpei:231944. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/fevszcz.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.