IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1399-d108384.html
   My bibliography  Save this article

Temperature Estimation for Photovoltaic Array Using an Adaptive Neuro Fuzzy Inference System

Author

Listed:
  • A. Bassam

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico)

  • O. May Tzuc

    (Posgrado en Energías Renovables, Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico)

  • M. Escalante Soberanis

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico)

  • L. J. Ricalde

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico)

  • B. Cruz

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico)

Abstract

Module temperature is an important parameter of photovoltaic energy systems since their performance is affected by its variation. Several cooling controllers require a precise estimation of module temperature to reduce excessive heating and power losses. In this work, an adaptive neuro fuzzy inference system technique is developed for temperature estimation of photovoltaic systems. For the learning process, experimental measurements comprising six environmental variables (temperature, irradiance, wind velocity, wind direction, relative humidity, and atmospheric pressure) and one operational variable (photovoltaic power output) were used as training parameters. The proposed predictive model comprises a zero-order Sugeno neuro fuzzy system with two generalized bell-shaped membership functions per input and 128 fuzzy rules. The model is validated with experimental information from an instrumented photovoltaic system with a fitness correlation parameter of R = 95%. The obtained results indicate that the proposed methodology provides a reliable tool for estimation of modules temperature based on environmental variables. The developed algorithm can be implemented as part of a cooling control system of photovoltaic modules to reduce the efficiency losses.

Suggested Citation

  • A. Bassam & O. May Tzuc & M. Escalante Soberanis & L. J. Ricalde & B. Cruz, 2017. "Temperature Estimation for Photovoltaic Array Using an Adaptive Neuro Fuzzy Inference System," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1399-:d:108384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadi, Kasra & Shamshirband, Shahaboddin & Kamsin, Amirrudin & Lai, P.C. & Mansor, Zulkefli, 2016. "Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 423-434.
    2. Mellit, A. & Kalogirou, S.A. & Hontoria, L. & Shaari, S., 2009. "Artificial intelligence techniques for sizing photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 406-419, February.
    3. Lian Zhang & Zi Jian Chen, 2017. "Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT) System," Energies, MDPI, vol. 10(4), pages 1-13, April.
    4. Feiyu Zhang & Yuqi Dong & Kequan Zhang, 2016. "A Novel Combined Model Based on an Artificial Intelligence Algorithm—A Case Study on Wind Speed Forecasting in Penglai, China," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    5. Yordanov, Georgi Hristov & Midtgård, Ole-Morten & Saetre, Tor Oskar, 2012. "Series resistance determination and further characterization of c-Si PV modules," Renewable Energy, Elsevier, vol. 46(C), pages 72-80.
    6. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2017. "Experimental and Numerical Analyses of a Flat Plate Photovoltaic/Thermal Solar Collector," Energies, MDPI, vol. 10(4), pages 1-21, April.
    7. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    8. Raza, Muhammad Qamar & Khosravi, Abbas, 2015. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1352-1372.
    9. Mellit, Adel & Kalogirou, Soteris A., 2011. "ANFIS-based modelling for photovoltaic power supply system: A case study," Renewable Energy, Elsevier, vol. 36(1), pages 250-258.
    10. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "Economic Analysis of a Photovoltaic System: A Resource for Residential Households," Energies, MDPI, vol. 10(6), pages 1-15, June.
    11. Yuyang Gao & Chao Qu & Kequan Zhang, 2016. "A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(10), pages 1-28, September.
    12. Abiola-Ogedengbe, Ayodeji & Hangan, Horia & Siddiqui, Kamran, 2015. "Experimental investigation of wind effects on a standalone photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 78(C), pages 657-665.
    13. Yaïci, Wahiba & Entchev, Evgueniy, 2016. "Adaptive Neuro-Fuzzy Inference System modelling for performance prediction of solar thermal energy system," Renewable Energy, Elsevier, vol. 86(C), pages 302-315.
    14. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    15. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    16. Sun-Hee Kim & Soon-Jong Yoon & Wonchang Choi & Ki-Bong Choi, 2016. "Application of Floating Photovoltaic Energy Generation Systems in South Korea," Sustainability, MDPI, vol. 8(12), pages 1-9, December.
    17. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    18. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2007. "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," Renewable Energy, Elsevier, vol. 32(2), pages 285-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    2. Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja & Giovanni Petrone & Giovanni Spagnuolo, 2018. "A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions," Energies, MDPI, vol. 11(4), pages 1-17, March.
    3. Nun Pitalúa-Díaz & Fernando Arellano-Valmaña & Jose A. Ruz-Hernandez & Yasuhiro Matsumoto & Hussain Alazki & Enrique J. Herrera-López & Jesús Fernando Hinojosa-Palafox & A. García-Juárez & Ricardo Art, 2019. "An ANFIS-Based Modeling Comparison Study for Photovoltaic Power at Different Geographical Places in Mexico," Energies, MDPI, vol. 12(14), pages 1-16, July.
    4. Reza Salehi & Santhana Krishnan & Mohd Nasrullah & Sumate Chaiprapat, 2023. "Using Machine Learning to Predict the Performance of a Cross-Flow Ultrafiltration Membrane in Xylose Reductase Separation," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    5. Serrano-Luján, L. & Toledo, C. & Colmenar, J.M. & Abad, J. & Urbina, A., 2022. "Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms," Applied Energy, Elsevier, vol. 315(C).
    6. Ahmad Manasrah & Mohammad Masoud & Yousef Jaradat & Piero Bevilacqua, 2022. "Investigation of a Real-Time Dynamic Model for a PV Cooling System," Energies, MDPI, vol. 15(5), pages 1-15, March.
    7. Orozco-Gutierrez, M.L. & Spagnuolo, G. & Ramos-Paja, C.A. & Ramirez-Scarpetta, J.M & Ospina-Agudelo, B., 2019. "Enhanced simulation of total cross tied photovoltaic arrays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 49-64.
    8. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selimefendigil, Fatih & Bayrak, Fatih & Oztop, Hakan F., 2018. "Experimental analysis and dynamic modeling of a photovoltaic module with porous fins," Renewable Energy, Elsevier, vol. 125(C), pages 193-205.
    2. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    3. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    5. Henrik Zsiborács & Gábor Pintér & Attila Bai & József Popp & Zoltán Gabnai & Béla Pályi & István Farkas & Nóra Hegedűsné Baranyai & Christian Gützer & Heidelinde Trimmel & Sandro Oswald & Philipp Weih, 2018. "Comparison of Thermal Models for Ground-Mounted South-Facing Photovoltaic Technologies: A Practical Case Study," Energies, MDPI, vol. 11(5), pages 1-18, May.
    6. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Wang, Gang & Zhao, Ke & Shi, Jiangtao & Chen, Wei & Zhang, Haiyang & Yang, Xinsheng & Zhao, Yong, 2017. "An iterative approach for modeling photovoltaic modules without implicit equations," Applied Energy, Elsevier, vol. 202(C), pages 189-198.
    9. Wang, Gang & Zhao, Ke & Qiu, Tian & Yang, Xinsheng & Zhang, Yong & Zhao, Yong, 2016. "The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules," Energy, Elsevier, vol. 115(P1), pages 478-485.
    10. Casares, F.J. & Lopez-Luque, R. & Posadillo, R. & Varo-Martinez, M., 2014. "Mathematical approach to the characterization of daily energy balance in autonomous photovoltaic solar systems," Energy, Elsevier, vol. 72(C), pages 393-404.
    11. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    12. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    13. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    14. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    15. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    16. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    17. Evaldo C. Gouvêa & Pedro M. Sobrinho & Teófilo M. Souza, 2017. "Spectral Response of Polycrystalline Silicon Photovoltaic Cells under Real-Use Conditions," Energies, MDPI, vol. 10(8), pages 1-13, August.
    18. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    19. Dohnal, Mirko, 2016. "Complex biofuels related scenarios generated by qualitative reasoning under severe information shortages: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 676-684.
    20. Amadou Fousseyni Touré & Sid Ali Addouche & Fadaba Danioko & Badié Diourté & Abderrahman El Mhamedi, 2019. "Hybrid Systems Optimization: Application to Hybrid Systems Photovoltaic Connected to Grid. A Mali Case Study," Sustainability, MDPI, vol. 11(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1399-:d:108384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.