IDEAS home Printed from https://ideas.repec.org/a/ags/aolpei/262468.html
   My bibliography  Save this article

Statistical Feature Ranking and Fuzzy Supervised Learning Approach in Modeling Regional Rainfall Prediction Systems

Author

Listed:
  • Sudha, M.
  • Subbu, K.

Abstract

Rainfall prediction is an essential and challenging task in hydro-meteorology. Most of the existing weather dataset used for prediction consists of observatory record of several atmospheric parameters. Identifying the significant parameters from irrelevant and redundant parameter set for weather prediction is important because irrelevant parameters may decrease the prediction accuracy. The main intent of this research is to identify the influencing weather parameters for improving daily rainfall forecast efficiency. A parameter selection module identifies the significant parameter based on information gain based feature ranking. Fuzzy supervised learning module evaluates the performance of fuzzy classifiers before and after parameter selection. In the evaluation phase, learning techniques was analyzed in terms of Accuracy Rate (AcR), Root Mean Squared Error (RMSE) and Misclassification Rate (McR). Experimental results revealed that, parameter subset selection has significantly improved the performance of the learning techniques. The investigation results identified minimum temperature, relative humidity and evapotranspiration as influencing weather parameters for rainfall prediction. Empirical results revealed Fuzzy Unordered Rule Induction Algorithm (FURIA) as a suitable rainfall prediction approach. This fuzzy model achieved an enhanced accuracy rate of 84.10% after parameter selection with nominal misclassification rate of 0.1590%.

Suggested Citation

  • Sudha, M. & Subbu, K., 2017. "Statistical Feature Ranking and Fuzzy Supervised Learning Approach in Modeling Regional Rainfall Prediction Systems," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 9(2), June.
  • Handle: RePEc:ags:aolpei:262468
    DOI: 10.22004/ag.econ.262468
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/262468/files/342_agris_on-line_2017_2_sudha_subbu.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/262468/files/342_agris_on-line_2017_2_sudha_subbu.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.262468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sudha, M. & Valarmathi, B., 2015. "Impact of Hybrid Intelligent Computing in Identifying Constructive Weather Parameters for Modeling Effective Rainfall Prediction," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 7(4), pages 1-10, December.
    2. Sudha, M. & Valarmathi, B., 2014. "Rainfall Forecast Analysis using Rough Set Attribute Reduction and Data Mining Methods," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 6(4), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudha, M. & Valarmathi, B., 2015. "Impact of Hybrid Intelligent Computing in Identifying Constructive Weather Parameters for Modeling Effective Rainfall Prediction," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 7(4), pages 1-10, December.
    2. Gao, Yang & Zhang, Xiao & Wu, Lei & Yin, Shijiu & Lu, Jiao, 2017. "Resource basis, ecosystem and growth of grain family farm in China: Based on rough set theory and hierarchical linear model," Agricultural Systems, Elsevier, vol. 154(C), pages 157-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aolpei:262468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/fevszcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.