IDEAS home Printed from https://ideas.repec.org/a/ags/aieabj/149222.html
   My bibliography  Save this article

Greenhouse gases mitigation policies in the agriculture of Aragon, Spain

Author

Listed:
  • Kahil, Mohamed Taher
  • Albiac, José

Abstract

Climate change is an important threat to human society. Agriculture is a source of greenhouse gases (GHG), but it also provides alternatives to confront climate change. The expansion of intensive agriculture around the world during recent decades has generated significant environmental damages from pollution emissions. The spatial distribution of emissions is important for the design of local abatement measures. This study makes an assessment of GHG emissions in an intensive agricultural area of Aragon (Spain), and then an economic optimization model is developed to analyze several GHG mitigation measures. The results indicate that adequate management of manure, emissions limits, and animal production restrictions are appropriate measures to abate pollution. Economic instruments such as input and emission taxes could be only ancillary measures to address nonpoint pollution problems. Suitable pollution abatement policies should be based on institutional instruments adapted to local conditions, and involve the cooperation of stakeholders.

Suggested Citation

  • Kahil, Mohamed Taher & Albiac, José, 2013. "Greenhouse gases mitigation policies in the agriculture of Aragon, Spain," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 2(1), pages 1-24, April.
  • Handle: RePEc:ags:aieabj:149222
    DOI: 10.22004/ag.econ.149222
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/149222/files/10885-23939-1-PB.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.149222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Phoebe Koundouri & Christina Christou, 2006. "Dynamic adaptation to resource scarcity and backstop availability: theory and application to groundwater ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 227-245, June.
    2. Bernd Lengers & Wolfgang Britz, 2012. "The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 93(2), pages 117-144.
    3. Pérez Domínguez, Ignacio & Britz, Wolfgang & Holm-Müller, Karin, 2009. "Trading schemes for greenhouse gas emissions from European agriculture: A comparative analysis based on different implementation options," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 90(3).
    4. James S. Shortle & Richard D. Horan, 2001. "The Economics of Nonpoint Pollution Control," Journal of Economic Surveys, Wiley Blackwell, vol. 15(3), pages 255-289, July.
    5. Elinor Ostrom, 2010. "Beyond Markets and States: Polycentric Governance of Complex Economic Systems," American Economic Review, American Economic Association, vol. 100(3), pages 641-672, June.
    6. Alfons Weersink & John R. Livernois & Jason F. Shogren & James S. Shortle, 1998. "Economic Instruments and Environmental Policy in Agriculture," Canadian Public Policy, University of Toronto Press, vol. 24(3), pages 309-327, September.
    7. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    8. Stéphane Cara & Martin Houzé & Pierre-Alain Jayet, 2005. "Methane and Nitrous Oxide Emissions from Agriculture in the EU: A Spatial Assessment of Sources and Abatement Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(4), pages 551-583, December.
    9. Onal, Hayri & McCarl, Bruce A, 1989. "Aggregation of Heterogeneous Firms in Mathematical Programming Models," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 16(4), pages 499-513.
    10. Hayri Önal & Bruce A. McCarl, 1991. "Exact Aggregation in Mathematical Programming Sector Models," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 39(2), pages 319-334, July.
    11. repec:bla:jecsur:v:15:y:2001:i:3:p:255-89 is not listed on IDEAS
    12. Dominic Moran & Michael Macleod & Eileen Wall & Vera Eory & Alistair McVittie & Andrew Barnes & Robert Rees & Cairistiona F. E. Topp & Andrew Moxey, 2011. "Marginal Abatement Cost Curves for UK Agricultural Greenhouse Gas Emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(1), pages 93-118, February.
    13. Xiaoguang Chen & Hayri Önal, 2012. "Modeling Agricultural Supply Response Using Mathematical Programming and Crop Mixes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 674-686.
    14. Segerson, Kathleen, 1988. "Uncertainty and incentives for nonpoint pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 15(1), pages 87-98, March.
    15. Lengers, Bernd, 2012. "The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach," Revue d'Etudes en Agriculture et Environnement, Editions NecPlus, vol. 93(02), pages 117-144, June.
    16. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, September.
    17. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    18. Richard H. Day, 1963. "On Aggregating Linear Programming Models of Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 45(4), pages 797-813.
    19. MacLeod, Michael & Moran, Dominic & Eory, Vera & Rees, R.M. & Barnes, Andrew & Topp, Cairistiona F.E. & Ball, Bruce & Hoad, Steve & Wall, Eileen & McVittie, Alistair & Pajot, Guillaume & Matthews, Rob, 2010. "Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK," Agricultural Systems, Elsevier, vol. 103(4), pages 198-209, May.
    20. Esteban, Encarna & Albiac, José, 2011. "Groundwater and ecosystems damages: Questioning the Gisser-Sánchez effect," Ecological Economics, Elsevier, vol. 70(11), pages 2062-2069, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safa Baccour & Jose Albiac & Taher Kahil, 2021. "Cost-Effective Mitigation of Greenhouse Gas Emissions in the Agriculture of Aragon, Spain," IJERPH, MDPI, vol. 18(3), pages 1-19, January.
    2. Santeramo, Fabio Gaetano & Maccarone, Irene, 2022. "Analisi storica delle rese agricole e la variabilità del clima: Analisi dei dati italiani sui cereali [Historical crop yields and climate variability: analysis of Italian cereal data]," MPRA Paper 114135, University Library of Munich, Germany, revised 04 Aug 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lengers, Bernd & Britz, Wolfgang & Holm-Müller, Karin, 2013. "Trade-off of feasibility against accuracy and cost efficiency in choosing indicators for the abatement of GHG-emissions in dairy farming," Discussion Papers 162877, University of Bonn, Institute for Food and Resource Economics.
    2. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    3. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    4. Encarna Esteban & José Albiac, 2016. "Salinity Pollution Control in the Presence of Farm Heterogeneity — An Empirical Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-20, June.
    5. Huber, Robert & Tarruella, Marta & Schäfer, David & Finger, Robert, 2023. "Marginal climate change abatement costs in Swiss dairy production considering farm heterogeneity and interaction effects," Agricultural Systems, Elsevier, vol. 207(C).
    6. Benjamin Dequiedt & Dominic Moran, 2014. "The cost of emissions mitigation by legume crops in French agriculture," Working Papers 1410, Chaire Economie du climat.
    7. Schmid, Erwin & Sinabell, Franz, 2005. "Using the Positive Mathematical Programming Method to Calibrate Linear Programming Models," Discussion Papers DP-10-2005, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    8. Doole, Graeme J., 2012. "Cost-effective policies for improving water quality by reducing nitrate emissions from diverse dairy farms: An abatement–cost perspective," Agricultural Water Management, Elsevier, vol. 104(C), pages 10-20.
    9. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.
    10. Franz Sinabell & Martin Schönhart & Erwin Schmid, 2015. "Austrian Agriculture 2010-2050. Quantitative Effects of Climate Change Mitigation Measures – An Analysis of the Scenarios WEM, WAM and a Sensitivity Analysis of the Scenario WEM," WIFO Studies, WIFO, number 58400.
    11. Colson, Gregory & Menapace, Luisa, 2012. "Multiple receptor ambient monitoring and firm compliance with environmental taxes under budget and target driven regulatory missions," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 390-401.
    12. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    13. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    14. Suter, Jordan F. & Vossler, Christian A. & Poe, Gregory L., 2009. "Ambient-based pollution mechanisms: A comparison of homogeneous and heterogeneous groups of emitters," Ecological Economics, Elsevier, vol. 68(6), pages 1883-1892, April.
    15. Gordon, Simon, 2003. "Economic Instruments For Nonpoint Source Water Pollution: Options For The Swan-Canning River System," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 57873, Australian Agricultural and Resource Economics Society.
    16. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    17. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2014. "Modelling Bi-lateral Forest Product Trade Flows: Experiencing Vertical and Horizontal Chain Optimization," Working Papers 197898, University of Victoria, Resource Economics and Policy.
    18. Hofreither, Markus F. & Schmid, Erwin & Sinabell, Franz, 2004. "Phasing Out Of Environmentally Harmful Subsidies: Effects Of The Cap 2003 Reform," 2004 Annual meeting, August 1-4, Denver, CO 20169, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    20. Garnache, Cloe & Merel, Pierre R., 2012. "Carbon market policy design: Investigating the role of payments aggregation," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124960, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aieabj:149222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aieaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.