IDEAS home Printed from https://ideas.repec.org/a/aes/dbjour/v7y2016i1p12-21.html
   My bibliography  Save this article

A Stock Market Prediction Method Based on Support Vector Machines (SVM) and Independent Component Analysis (ICA)

Author

Listed:
  • Hakob GRIGORYAN

    (University of Economic Studies, Bucharest, Romania)

Abstract

The research presented in this work focuses on financial time series prediction problem. The integrated prediction model based on support vector machines (SVM) with independent component analysis (ICA) (called SVM-ICA) is proposed for stock market prediction. The presented approach first uses ICA technique to extract important features from the research data, and then applies SVM technique to perform time series prediction. The results obtained from the SVM-ICA technique are compared with the results of SVM-based model without using any pre-processing step. In order to show the effectiveness of the proposed methodology, two different research data are used as illustrative examples. In experiments, the root mean square error (RMSE) measure is used to evaluate the performance of proposed models. The comparative analysis leads to the conclusion that the proposed SVM-ICA model outperforms the simple SVM-based model in forecasting task of nonstationary time series.

Suggested Citation

  • Hakob GRIGORYAN, 2016. "A Stock Market Prediction Method Based on Support Vector Machines (SVM) and Independent Component Analysis (ICA)," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 7(1), pages 12-21, August.
  • Handle: RePEc:aes:dbjour:v:7:y:2016:i:1:p:12-21
    as

    Download full text from publisher

    File URL: http://www.dbjournal.ro/archive/23/23_2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    2. Catalina Lucia COCIANU & Hakob GRIGORYAN, 2015. "An Artificial Neural Network for Data Forecasting Purposes," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 19(2), pages 34-45.
    3. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
    2. Liu, Keyan & Zhou, Jianan & Dong, Dayong, 2021. "Improving stock price prediction using the long short-term memory model combined with online social networks," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    3. Hüseyin İlker Erçen & Hüseyin Özdeşer & Turgut Türsoy, 2022. "The Impact of Macroeconomic Sustainability on Exchange Rate: Hybrid Machine-Learning Approach," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    4. Shuheng Wang & Guohao Li & Yifan Bao, 2018. "A novel improved fuzzy support vector machine based stock price trend forecast model," Papers 1801.00681, arXiv.org.
    5. Akshit Kurani & Pavan Doshi & Aarya Vakharia & Manan Shah, 2023. "A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting," Annals of Data Science, Springer, vol. 10(1), pages 183-208, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Zahariev & Mikhail Zveryаkov & Stoyan Prodanov & Galina Zaharieva & Petko Angelov & Silvia Zarkova & Mariana Petrova, 2020. "Debt management evaluation through Support Vector Machines: on the example of Italy and Greece," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 2382-2393, March.
    2. Ślepaczuk Robert & Zenkova Maryna, 2018. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
    3. Zoran Vojinovic & Vojislav Kecman & Rainer Seidel, 2001. "A data mining approach to financial time series modelling and forecasting," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(4), pages 225-239, December.
    4. Wang, Chao & Lim, Ming K & Zhao, Longfeng & Tseng, Ming-Lang & Chien, Chen-Fu & Lev, Benjamin, 2020. "The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview," Omega, Elsevier, vol. 93(C).
    5. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    6. Yoshio Kajitani & A. Ian Mcleod & Keith W. Hipel, 2005. "Forecasting nonlinear time series with feed-forward neural networks: a case study of Canadian lynx data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 105-117.
    7. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    8. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    9. Ali Babikir & Henry Mwambi, 2016. "Evaluating the combined forecasts of the dynamic factor model and the artificial neural network model using linear and nonlinear combining methods," Empirical Economics, Springer, vol. 51(4), pages 1541-1556, December.
    10. Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
    11. Moisan, Stella & Herrera, Rodrigo & Clements, Adam, 2018. "A dynamic multiple equation approach for forecasting PM2.5 pollution in Santiago, Chile," International Journal of Forecasting, Elsevier, vol. 34(4), pages 566-581.
    12. Alekseev, K.P.G. & Seixas, J.M., 2009. "A multivariate neural forecasting modeling for air transport – Preprocessed by decomposition: A Brazilian application," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 212-216.
    13. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    14. Syouching Lai & Hungchih Li, 2006. "The predictive power of quarterly earnings per share based on time series and artificial intelligence model," Applied Financial Economics, Taylor & Francis Journals, vol. 16(18), pages 1375-1388.
    15. Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
    16. M. Tanveer & T. Rajani & R. Rastogi & Y. H. Shao & M. A. Ganaie, 2024. "Comprehensive review on twin support vector machines," Annals of Operations Research, Springer, vol. 339(3), pages 1223-1268, August.
    17. ?enol Emir & Hasan Din?er & Mehpare Timor, 2012. "A Stock Selection Model Based on Fundamental and Technical Analysis Variables by Using Artificial Neural Networks and Support Vector Machines," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 106-122, August.
    18. I. Marta Miranda García & María‐Jesús Segovia‐Vargas & Usue Mori & José A. Lozano, 2023. "Early prediction of Ibex 35 movements," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1150-1166, August.
    19. Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
    20. Bundzel, Marek & Kasanický, Tomáš & Pinčák, Richard, 2016. "Using string invariants for prediction searching for optimal parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 680-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:dbjour:v:7:y:2016:i:1:p:12-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adela Bara (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.