IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i3d10.1007_s10479-022-04575-w.html
   My bibliography  Save this article

Comprehensive review on twin support vector machines

Author

Listed:
  • M. Tanveer

    (Indian Institute of Technology Indore)

  • T. Rajani

    (Indian Institute of Technology Indore)

  • R. Rastogi

    (South Asian University)

  • Y. H. Shao

    (Hainan University)

  • M. A. Ganaie

    (Indian Institute of Technology Indore)

Abstract

Twin support vector machine (TWSVM) and twin support vector regression (TSVR) are newly emerging efficient machine learning techniques which offer promising solutions for classification and regression challenges respectively. TWSVM is based upon the idea to identify two nonparallel hyperplanes which classify the data points to their respective classes. It requires to solve two small sized quadratic programming problems (QPPs) in lieu of solving single large size QPP in support vector machine (SVM) while TSVR is formulated on the lines of TWSVM and requires to solve two SVM kind problems. Although there has been good research progress on these techniques; there is limited literature on the comparison of different variants of TSVR. Thus, this review presents a rigorous analysis of recent research in TWSVM and TSVR simultaneously mentioning their limitations and advantages. To begin with, we first introduce the basic theory of support vector machine, TWSVM and then focus on the various improvements and applications of TWSVM, and then we introduce TSVR and its various enhancements. Finally, we suggest future research and development prospects.

Suggested Citation

  • M. Tanveer & T. Rajani & R. Rastogi & Y. H. Shao & M. A. Ganaie, 2024. "Comprehensive review on twin support vector machines," Annals of Operations Research, Springer, vol. 339(3), pages 1223-1268, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-022-04575-w
    DOI: 10.1007/s10479-022-04575-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04575-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04575-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Edelman, 2007. "Adapting support vector machine methods for horserace odds prediction," Annals of Operations Research, Springer, vol. 151(1), pages 325-336, April.
    2. Mohammad Poursaeidi & O. Kundakcioglu, 2014. "Robust support vector machines for multiple instance learning," Annals of Operations Research, Springer, vol. 216(1), pages 205-227, May.
    3. Deepak Gupta & Mahardhika Pratama & Zhenyuan Ma & Jun Li & Mukesh Prasad, 2019. "Financial time series forecasting using twin support vector regression," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.
    4. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    5. Jiaxin Li & Zijun Zhou & Jianyu Dong & Ying Fu & Yuan Li & Ze Luan & Xin Peng, 2021. "Predicting breast cancer 5-year survival using machine learning: A systematic review," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-23, April.
    6. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    7. Yitian Xu & Mei Chen & Guohui Li, 2016. "Least squares twin support vector machine with Universum data for classification," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3637-3645, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
    2. Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.
    3. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    4. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    5. Ching-Hsin Wang & Feng-Chia Li, 2020. "Economic design under gamma shock model of the control chart for sustainable operations," Annals of Operations Research, Springer, vol. 290(1), pages 169-190, July.
    6. Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
    7. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    8. Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
    9. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    10. Scindhiya Laxmi & S. K. Gupta & Sumit Kumar, 2024. "Intuitionistic fuzzy least square twin support vector machines for pattern classification," Annals of Operations Research, Springer, vol. 339(3), pages 1329-1378, August.
    11. Hong-Yu Lin & Kuentai Chen, 2015. "The Trend of Average Unit Price in Taipei City," Research in World Economy, Research in World Economy, Sciedu Press, vol. 6(1), pages 133-142, March.
    12. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    13. Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
    14. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    15. Georgi Nalbantov & Philip Hans Franses & Patrick Groenen & Jan Bioch, 2010. "Estimating the Market Share Attraction Model using Support Vector Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 688-716.
    16. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    17. Hyejung Chung & Kyung-shik Shin, 2018. "Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    18. Ślepaczuk Robert & Zenkova Maryna, 2018. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
    19. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
    20. Zakaria Boulanouar & Ghassane Benrhmach & Rihab Grassa & Sonia Abdennadher & Mariam Aldhaheri, 2024. "Exploring the predictive power of artificial neural networks in linking global Islamic indices with a local Islamic index," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-022-04575-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.