IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej37-3-keppler.html
   My bibliography  Save this article

The Impacts of Variable Renewable Production and Market Coupling on the Convergence of French and German Electricity Prices

Author

Listed:
  • Jan Horst Keppler, Sebastien Phan, and Yannick Le Pen

Abstract

This paper estimates the impact of two separate factors on the spread between French and German electricity prices, the amount of production by variable renewables and "market coupling". As renewable electricity production is concentrated during a limited number of hours with favourable meteorological conditions and interconnection capacity between France and Germany is limited, increases in production of wind and solar PV in Germany lead to increasing price spreads between the two countries. Our estimates based on a sample of 24 hourly French and German day-ahead prices from November 2009 to June 2013 confirm that renewable electricity production in Germany has a strongly positive impact on price divergence. On the other hand, market coupling, the establishment of a combined order book on the basis of information of both markets, which was introduced in November 2010, can be shown to have mitigated the observed price divergence. Both results have policy relevant implications for welfare and the optimal provision of interconnection capacity.

Suggested Citation

  • Jan Horst Keppler, Sebastien Phan, and Yannick Le Pen, 2016. "The Impacts of Variable Renewable Production and Market Coupling on the Convergence of French and German Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  • Handle: RePEc:aen:journl:ej37-3-keppler
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2788
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huisman, Ronald & Huurman, Christian & Mahieu, Ronald, 2007. "Hourly electricity prices in day-ahead markets," Energy Economics, Elsevier, vol. 29(2), pages 240-248, March.
    2. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    3. Doorman, Gerard L. & Frøystad, Dag Martin, 2013. "The economic impacts of a submarine HVDC interconnection between Norway and Great Britain," Energy Policy, Elsevier, vol. 60(C), pages 334-344.
    4. Lynch, Muireann Á. & Tol, Richard S.J. & O'Malley, Mark J., 2012. "Optimal interconnection and renewable targets for north-west Europe," Energy Policy, Elsevier, vol. 51(C), pages 605-617.
    5. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    6. Benjamin F. Hobbs & Fieke A.M. Rijkers & Maroeska G. Boots, 2005. "The More Cooperation, The More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-98.
    7. MacCormack, John & Hollis, Aidan & Zareipour, Hamidreza & Rosehart, William, 2010. "The large-scale integration of wind generation: Impacts on price, reliability and dispatchable conventional suppliers," Energy Policy, Elsevier, vol. 38(7), pages 3837-3846, July.
    8. Zachmann, Georg, 2008. "Electricity wholesale market prices in Europe: Convergence?," Energy Economics, Elsevier, vol. 30(4), pages 1659-1671, July.
    9. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    10. Creti, Anna & Fumagalli, Eileen & Fumagalli, Elena, 2010. "Integration of electricity markets in Europe: Relevant issues for Italy," Energy Policy, Elsevier, vol. 38(11), pages 6966-6976, November.
    11. Pellini, Elisabetta, 2012. "Measuring the impact of market coupling on the Italian electricity market," Energy Policy, Elsevier, vol. 48(C), pages 322-333.
    12. Denny, E. & Tuohy, A. & Meibom, P. & Keane, A. & Flynn, D. & Mullane, A. & O'Malley, M., 2010. "The impact of increased interconnection on electricity systems with large penetrations of wind generation: A case study of Ireland and Great Britain," Energy Policy, Elsevier, vol. 38(11), pages 6946-6954, November.
    13. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
    14. Régis Bourbonnais & Jan Horst Keppler, 2017. "Estimation de l’élasticité prix de la demande électrique en France," Working Papers hal-01491706, HAL.
    15. Spiecker, Stephan & Vogel, Philip & Weber, Christoph, 2013. "Evaluating interconnector investments in the north European electricity system considering fluctuating wind power penetration," Energy Economics, Elsevier, vol. 37(C), pages 114-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gugler, Klaus & Haxhimusa, Adhurim, 2019. "Market integration and technology mix: Evidence from the German and French electricity markets," Energy Policy, Elsevier, vol. 126(C), pages 30-46.
    2. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2016. "Integration and Efficiency of European Electricity Markets: Evidence from Spot Prices," Department of Economics Working Paper Series 226, WU Vienna University of Economics and Business.
    3. Brennan, Noreen & van Rensburg, Thomas M., 2020. "Public preferences for wind farms involving electricity trade and citizen engagement in Ireland," Energy Policy, Elsevier, vol. 147(C).
    4. Newbery, David & Gissey, Giorgio Castagneto & Guo, Bowei & Dodds, Paul E., 2019. "The private and social value of British electrical interconnectors," Energy Policy, Elsevier, vol. 133(C).
    5. Frondel, Manuel & Kaeding, Matthias & Sommer, Stephan, 2022. "Market premia for renewables in Germany: The effect on electricity prices," Energy Economics, Elsevier, vol. 109(C).
    6. Rinne, Sonja, 2018. "Radioinactive: Are nuclear power plant outages in France contagious to the German electricity price?," CIW Discussion Papers 3/2018, University of Münster, Center for Interdisciplinary Economics (CIW).
    7. Adeoye, Omotola & Spataru, Catalina, 2020. "Quantifying the integration of renewable energy sources in West Africa's interconnected electricity network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Jan Horst Keppler & William Meunier, 2018. "Determining Optimal Interconnection Capacity on the Basis of Hourly Demand and Supply Functions of Electricity," The Energy Journal, , vol. 39(3), pages 117-140, May.
    9. Pfeifer, Antun & Krajačić, Goran & Haas, Reinhard & Duić, Neven, 2020. "Consequences of different strategic decisions of market coupled zones on the development of energy systems based on coal and hydropower," Energy, Elsevier, vol. 210(C).
    10. Klaus Gugler & Adhurim Haxhimusa, 2016. "Cross-Border Technology Differences and Trade Barriers: Evidence from German and French Electricity Markets," Department of Economics Working Papers wuwp237, Vienna University of Economics and Business, Department of Economics.
    11. Gugler, Klaus & Haxhimusa, Adhurim, 2016. "Cross-Border Technology Differences and Trade Barriers: Evidence from German and French Electricity Markets," Department of Economics Working Paper Series 237, WU Vienna University of Economics and Business.
    12. Flottmann, Jonty, 2024. "Australian energy policy decisions in the wake of the 2022 energy crisis," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 238-248.
    13. Tselika, Kyriaki & Tselika, Maria & Demetriades, Elias, 2024. "Quantifying the short-term asymmetric effects of renewable energy on the electricity merit-order curve," Energy Economics, Elsevier, vol. 132(C).
    14. Luis María Abadie & José Manuel Chamorro, 2024. "On the Dynamics of Spot Power Prices across Western Europe in Pandemic Times," Energies, MDPI, vol. 17(14), pages 1-24, July.
    15. Finn Roar Aune & Rolf Golombek, 2021. "Are Carbon Prices Redundant in the 2030 EU Climate and Energy Policy Package?," The Energy Journal, , vol. 42(3), pages 225-264, May.
    16. Samarth Kumar & David Schönheit & Matthew Schmidt & Dominik Möst, 2019. "Parsing the Effects of Wind and Solar Generation on the German Electricity Trade Surplus," Energies, MDPI, vol. 12(18), pages 1-17, September.
    17. Theresa Graefe, 2023. "The effect of the Austrian-German bidding zone split on unplanned cross-border flows," Papers 2303.14182, arXiv.org.
    18. Lucia Parisio & Matteo Pelagatti, 2019. "Market coupling between electricity markets: theory and empirical evidence for the Italian–Slovenian interconnection," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 527-548, July.
    19. Tselika, Kyriaki, 2022. "The impact of variable renewables on the distribution of hourly electricity prices and their variability: A panel approach," Energy Economics, Elsevier, vol. 113(C).
    20. Sébastien Phan & Fabien Roques, 2015. "Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis," Cambridge Working Papers in Economics 1527, Faculty of Economics, University of Cambridge.
    21. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2020. "Impact of Solar and Wind Prices on the Integrated Global Electricity Spot and Options Markets: A Time Series Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 337-353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/14119 is not listed on IDEAS
    2. Jan Horst Keppler & Sébastien Phan & Yannick Le Pen & Charlotte Boureau, 2017. "The Impact of Intermittent Renewable Production and Market Coupling on the Convergence of French and German Electricity Prices," Working Papers hal-01599700, HAL.
    3. Vika Koban, 2017. "The impact of market coupling on Hungarian and Romanian electricity markets: Evidence from the regime-switching model," Energy & Environment, , vol. 28(5-6), pages 621-638, September.
    4. Sébastien Phan & Fabien Roques, 2015. "Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis," Cambridge Working Papers in Economics 1527, Faculty of Economics, University of Cambridge.
    5. Luigi De Paoli & Elena Fumagalli, 2013. "Estimating welfare losses and gains in explicit auctions for power trade: an application to the Italian case," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(2), pages 153-181.
    6. repec:dau:papers:123456789/15247 is not listed on IDEAS
    7. Meeus, Leonardo, 2011. "Implicit auctioning on the Kontek Cable: Third time lucky?," Energy Economics, Elsevier, vol. 33(3), pages 413-418, May.
    8. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2015. "Evaluating the market splitting determinants: evidence from the Iberian spot electricity prices," Energy Policy, Elsevier, vol. 85(C), pages 218-234.
    9. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    10. Gore, Olga & Vanadzina, Evgenia & Viljainen, Satu, 2016. "Linking the energy-only market and the energy-plus-capacity market," Utilities Policy, Elsevier, vol. 38(C), pages 52-61.
    11. Intini, Mario & Waterson, Michael, 2020. "Do British wind generators behave strategically in response to the Western Link interconnector?," CAGE Online Working Paper Series 455, Competitive Advantage in the Global Economy (CAGE).
    12. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    13. Hellwig, Michael & Schober, Dominik & Woll, Oliver, 2020. "Measuring market integration and estimating policy impacts on the Swiss electricity market," Energy Economics, Elsevier, vol. 86(C).
    14. Alexander Zerrahn & Daniel Huppmann, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," Discussion Papers of DIW Berlin 1380, DIW Berlin, German Institute for Economic Research.
    15. Dahlke, Steven & Sterling, John & Meehan, Colin, 2019. "Policy and market drivers for advancing clean energy," OSF Preprints hsbry, Center for Open Science.
    16. Lilian de Menezes & Melanie A. Houllier, 2013. "Modelling Germany´s Energy Transition and its Potential Effect on European Electricity Spot Markets," EcoMod2013 5395, EcoMod.
    17. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni, 2015. "Embodied CO2 emissions and cross-border electricity trade in Europe: Rebalancing burden sharing with energy storage," Applied Energy, Elsevier, vol. 143(C), pages 283-300.
    18. Pellini, Elisabetta, 2012. "Measuring the impact of market coupling on the Italian electricity market," Energy Policy, Elsevier, vol. 48(C), pages 322-333.
    19. Unger, Elizabeth A. & Ulfarsson, Gudmundur F. & Gardarsson, Sigurdur M. & Matthiasson, Thorolfur, 2018. "The effect of wind energy production on cross-border electricity pricing: The case of western Denmark in the Nord Pool market," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 121-130.
    20. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2017. "How to benefit from a common European electricity market design," Energy Policy, Elsevier, vol. 101(C), pages 629-643.
    21. Nepal, Rabindra & Jamasb, Tooraj, 2012. "Interconnections and market integration in the Irish Single Electricity Market," Energy Policy, Elsevier, vol. 51(C), pages 425-434.
    22. De Siano, Rita & Sapio, Alessandro, 2022. "Spatial merit order effects of renewables in the Italian power exchange," Energy Economics, Elsevier, vol. 108(C).

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej37-3-keppler. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.