IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v113y2022ics0140988322003449.html
   My bibliography  Save this article

The impact of variable renewables on the distribution of hourly electricity prices and their variability: A panel approach

Author

Listed:
  • Tselika, Kyriaki

Abstract

This paper investigates the impact of intermittent renewable generation on the distribution of electricity prices and their variability in Denmark and Germany. We exploit hourly data from 2015 to 2020 and employ a novel panel quantile approach - the Quantiles via moments (MMQR) method. Previous research has mainly used aggregated-daily data and have applied a time-series setting. We argue that since the electricity price formation and renewable energy generation can show great variations during a day, a panel setting with 24 individuals-hours could offer higher accuracy. Therefore, we apply a panel approach that accounts for both the time and cross-sectional dimension of electricity prices. The panel allows us to control for time-invariant (hourly-specific) characteristics and can reveal hidden market dynamics that exist during a day. The combination of hourly-specific effects and the quantile approach enable us to estimate the renewable sources effect on various price quantiles while controlling for market dynamics. In this way, we investigate extreme market cases accounting for the range and distribution of the electricity prices data. The results suggest that the merit-order effect occurs in both countries, with wind and solar generation having diverse effects on the electricity price distribution. Thus, policy makers should consider this diversifying effect to develop efficient renewable support schemes. We also explore non-linearities by including different demand levels in our model and investigate price variability. The outcomes indicate that wind generation increases (decreases) the occurrence of price fluctuations for low demand (high demand) in both countries. Meanwhile, in Germany, solar power stabilizes price fluctuations for high demand levels, stronger than wind. Market risk information could be useful for organizations in recognizing beneficial investment opportunities or hedging strategies. We finally aggregate the hourly observations into daily and compare the estimation outcomes. The results prompt us to believe that aggregated time-series tend to underestimate the RES impact on prices. In addition, we estimate the same models using hourly data in a time-series approach in order to verify that the diverse effect between aggregated time-series and hourly panel data is driven by the time-invariant characteristics, and not the data resolution. We find that the hourly time-series underestimate the merit-order effect, like in the aggregated time-series case, which supports our claims that the results are steered by the cross-sectional dimension. Thus, a panel approach could provide higher accuracy estimates of the RES influence on electricity prices. In conclusion, hourly-related features seem to affect the merit-order effect and its robustness, and a panel approach should be considered when investigating electricity markets.

Suggested Citation

  • Tselika, Kyriaki, 2022. "The impact of variable renewables on the distribution of hourly electricity prices and their variability: A panel approach," Energy Economics, Elsevier, vol. 113(C).
  • Handle: RePEc:eee:eneeco:v:113:y:2022:i:c:s0140988322003449
    DOI: 10.1016/j.eneco.2022.106194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322003449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    2. Huisman, Ronald & Huurman, Christian & Mahieu, Ronald, 2007. "Hourly electricity prices in day-ahead markets," Energy Economics, Elsevier, vol. 29(2), pages 240-248, March.
    3. Cyril Martin de Lagarde & Frédéric Lantz, 2018. "How renewable production depresses electricity prices: Evidence from the German market," Post-Print hal-01985024, HAL.
    4. Michael Haylock, 2022. "Distributional differences in the time horizon of executive compensation," Empirical Economics, Springer, vol. 62(1), pages 157-186, January.
    5. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    6. Lars Ivar Hagfors & Hilde Hørthe Kamperud & Florentina Paraschiv & Marcel Prokopczuk & Alma Sator & Sjur Westgaard, 2016. "Prediction of extreme price occurrences in the German day-ahead electricity market," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1929-1948, December.
    7. Jörg Breitung & Samarjit Das, 2005. "Panel unit root tests under cross‐sectional dependence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 414-433, November.
    8. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    9. Sirin, Selahattin Murat & Yilmaz, Berna N., 2020. "Variable renewable energy technologies in the Turkish electricity market: Quantile regression analysis of the merit-order effect," Energy Policy, Elsevier, vol. 144(C).
    10. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    11. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    12. Cheng Hsiao, 2007. "Panel data analysis—advantages and challenges," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-22, May.
    13. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    14. Cyril Martin de Lagarde & Frédéric Lantz, 2018. "How renewable production depresses electricity prices: Evidence from the German market," Post-Print hal-01986207, HAL.
    15. Michael L. Polemis, 2020. "A note on the estimation of competition-productivity nexus: a panel quantile approach," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(4), pages 663-676, December.
    16. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    17. Thao Pham, 2019. "Do German renewable energy resources affect prices and mitigate market power in the French electricity market ?," Applied Economics, Taylor & Francis Journals, vol. 51(54), pages 5829-5842, November.
    18. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(5), pages 793-813, December.
    19. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    20. Jan Horst Keppler, Sebastien Phan, and Yannick Le Pen, 2016. "The Impacts of Variable Renewable Production and Market Coupling on the Convergence of French and German Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    21. Gelabert, Liliana & Labandeira, Xavier & Linares, Pedro, 2011. "An ex-post analysis of the effect of renewables and cogeneration on Spanish electricity prices," Energy Economics, Elsevier, vol. 33(S1), pages 59-65.
    22. Apergis, Nicholas & Gozgor, Giray & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Dependence structure in the Australian electricity markets: New evidence from regular vine copulae," Energy Economics, Elsevier, vol. 90(C).
    23. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    24. Thao Pham, 2019. "Do German renewable energy resources affect prices and mitigate market power in the French electricity market ?," Post-Print hal-02570803, HAL.
    25. Hagfors, Lars Ivar & Bunn, Derek & Kristoffersen, Eline & Staver, Tiril Toftdahl & Westgaard, Sjur, 2016. "Modeling the UK electricity price distributions using quantile regression," Energy, Elsevier, vol. 102(C), pages 231-243.
    26. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    27. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    28. Maciejowska, Katarzyna, 2020. "Assessing the impact of renewable energy sources on the electricity price level and variability – A quantile regression approach," Energy Economics, Elsevier, vol. 85(C).
    29. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    30. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    31. Sapio, Alessandro, 2019. "Greener, more integrated, and less volatile? A quantile regression analysis of Italian wholesale electricity prices," Energy Policy, Elsevier, vol. 126(C), pages 452-469.
    32. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    33. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    34. Marshman, Daniel & Brear, Michael & Jeppesen, Matthew & Ring, Brendan, 2020. "Performance of wholesale electricity markets with high wind penetration," Energy Economics, Elsevier, vol. 89(C).
    35. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    36. Martin de Lagarde, Cyril & Lantz, Frédéric, 2018. "How renewable production depresses electricity prices: Evidence from the German market," Energy Policy, Elsevier, vol. 117(C), pages 263-277.
    37. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    38. Apergis, Nicholas & Gozgor, Giray & Lau, Chi Keung Marco & Wang, Shixuan, 2019. "Decoding the Australian electricity market: New evidence from three-regime hidden semi-Markov model," Energy Economics, Elsevier, vol. 78(C), pages 129-142.
    39. Johannes Mauritzen, 2013. "Dead Battery? Wind Power, the Spot Market, and Hydropower Interaction in the Nordic Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    40. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    41. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2017. "Does renewable energy generation decrease the volatility of electricity prices? An analysis of Denmark and Germany," Energy Economics, Elsevier, vol. 62(C), pages 270-282.
    42. Keles, Dogan & Dehler-Holland, Joris & Densing, Martin & Panos, Evangelos & Hack, Felix, 2020. "Cross-border effects in interconnected electricity markets - an analysis of the Swiss electricity prices," Energy Economics, Elsevier, vol. 90(C).
    43. Cheng Hsiao, 2007. "Rejoinder on: Panel data analysis—advantages and challenges," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 56-57, May.
    44. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Siwan & Shi, Jianheng & Wang, Baoyue & An, Na & Li, Li & Hou, Xuebing & Wang, Chunsen & Zhang, Xiandong & Wang, Kai & Li, Huilin & Zhang, Sui & Zhong, Ming, 2024. "A hybrid framework for day-ahead electricity spot-price forecasting: A case study in China," Applied Energy, Elsevier, vol. 373(C).
    2. Stringer, Thomas & Joanis, Marcelin & Abdoli, Shiva, 2024. "Power generation mix and electricity price," Renewable Energy, Elsevier, vol. 221(C).
    3. Saâdaoui, Foued & Ben Jabeur, Sami, 2023. "Analyzing the influence of geopolitical risks on European power prices using a multiresolution causal neural network," Energy Economics, Elsevier, vol. 124(C).
    4. Jouttijärvi, S. & Karttunen, L. & Ranta, S. & Miettunen, K., 2024. "Techno-economic analysis on optimizing the value of photovoltaic electricity in a high-latitude location," Applied Energy, Elsevier, vol. 361(C).
    5. Qu, Chunzi & Bang, Rasmus Noss, 2024. "European Grid Development Modeling and Analysis: Established Frameworks, Research Trends, and Future Opportunities," Discussion Papers 2024/11, Norwegian School of Economics, Department of Business and Management Science.
    6. Rangarajan, Arvind & Foley, Sean & Trück, Stefan, 2023. "Assessing the impact of battery storage on Australian electricity markets," Energy Economics, Elsevier, vol. 120(C).
    7. George E. Halkos & Apostolos S. Tsirivis, 2023. "Electricity Prices in the European Union Region: The Role of Renewable Energy Sources, Key Economic Factors and Market Liberalization," Energies, MDPI, vol. 16(6), pages 1-20, March.
    8. Donglan Liu & Xin Liu & Kun Guo & Qiang Ji & Yingxian Chang, 2023. "Spillover Effects among Electricity Prices, Traditional Energy Prices and Carbon Market under Climate Risk," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    9. Bikeri Adline & Kazushi Ikeda, 2023. "A Hawkes Model Approach to Modeling Price Spikes in the Japanese Electricity Market," Energies, MDPI, vol. 16(4), pages 1-20, February.
    10. Tselika, Kyriaki & Tselika, Maria & Demetriades, Elias, 2024. "Quantifying the short-term asymmetric effects of renewable energy on the electricity merit-order curve," Energy Economics, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tselika, Kyriaki & Tselika, Maria & Demetriades, Elias, 2024. "Quantifying the short-term asymmetric effects of renewable energy on the electricity merit-order curve," Energy Economics, Elsevier, vol. 132(C).
    2. Huisman, Ronald & Stet, Cristian, 2022. "The dependence of quantile power prices on supply from renewables," Energy Economics, Elsevier, vol. 105(C).
    3. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2021. "The Merit-Order Effect on the Swedish bidding zone with the highest electricity flow in the Elspot market," Energy Economics, Elsevier, vol. 102(C).
    4. Rinne, Sonja, 2024. "Estimating the merit-order effect using coarsened exact matching: Reconciling theory with the empirical results to improve policy implications," Energy Policy, Elsevier, vol. 185(C).
    5. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    6. Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).
    7. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    8. Ajanaku, Bolarinwa A. & Collins, Alan R., 2024. "“Comparing merit order effects of wind penetration across wholesale electricity markets”," Renewable Energy, Elsevier, vol. 226(C).
    9. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    11. Samarth Kumar & David Schönheit & Matthew Schmidt & Dominik Möst, 2019. "Parsing the Effects of Wind and Solar Generation on the German Electricity Trade Surplus," Energies, MDPI, vol. 12(18), pages 1-17, September.
    12. Maciejowska, Katarzyna, 2020. "Assessing the impact of renewable energy sources on the electricity price level and variability – A quantile regression approach," Energy Economics, Elsevier, vol. 85(C).
    13. Maniatis, Georgios I. & Milonas, Nikolaos T., 2022. "The impact of wind and solar power generation on the level and volatility of wholesale electricity prices in Greece," Energy Policy, Elsevier, vol. 170(C).
    14. Sirin, Selahattin Murat & Yilmaz, Berna N., 2020. "Variable renewable energy technologies in the Turkish electricity market: Quantile regression analysis of the merit-order effect," Energy Policy, Elsevier, vol. 144(C).
    15. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2022. "Cannibalization, depredation, and market remuneration of power plants," Energy Policy, Elsevier, vol. 167(C).
    16. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    17. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    18. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    19. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    20. Nibedita, Barsha & Irfan, Mohd, 2022. "Analyzing the asymmetric impacts of renewables on wholesale electricity price: Empirical evidence from the Indian electricity market," Renewable Energy, Elsevier, vol. 194(C), pages 538-551.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:113:y:2022:i:c:s0140988322003449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.