IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej35-si1-02.html
   My bibliography  Save this article

Technology and U.S. Emissions Reductions Goals: Results of the EMF 24 Modeling Exercise

Author

Listed:
  • Leon E. Clarke, Allen A. Fawcett, John P. Weyant, James McFarland, Vaibhav Chaturvedi, and Yuyu Zhou

Abstract

No abstract is available for this item.

Suggested Citation

  • Leon E. Clarke, Allen A. Fawcett, John P. Weyant, James McFarland, Vaibhav Chaturvedi, and Yuyu Zhou, 2014. "Technology and U.S. Emissions Reductions Goals: Results of the EMF 24 Modeling Exercise," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
  • Handle: RePEc:aen:journl:ej35-si1-02
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2586
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO 2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, September.
    3. Yunfa Zhu and Madanmohan Ghosh, 2014. "Impacts of Technology Uncertainty on Energy Use, Emission and Abatement Cost in USA: Simulation results from Environment Canada's Integrated Assessment Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    4. Page Kyle, Leon Clarke, Steven J. Smith, Son Kim, Mayda Nathan, and Marshall Wise, 2011. "The Value of Advanced End-Use Energy Technologies in Meeting U.S. Climate Policy Goals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    5. SERGEY PALTSEV & JOHN M. Reilly & HENRY D. JACOBY & ANGELO C. GURGEL & GILBERT E. METCALF & ANDREI P. SOKOLOV & JENNIFER F. HOLAK, 2008. "Assessment of US GHG cap-and-trade proposals," Climate Policy, Taylor & Francis Journals, vol. 8(4), pages 395-420, July.
    6. Calvin, Katherine & Fawcett, Allen & Kejun, Jiang, 2012. "Comparing model results to national climate policy goals: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 306-315.
    7. Sebastian Rausch & Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, , vol. 35(1_suppl), pages 199-228, June.
    8. Volker Krey & Leon Clarke, 2011. "Role of renewable energy in climate mitigation: a synthesis of recent scenarios," Climate Policy, Taylor & Francis Journals, vol. 11(4), pages 1131-1158, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    2. Allen A. Fawcett, Leon C. Clarke, Sebastian Rausch, and John P. Weyant, 2014. "Overview of EMF 24 Policy Scenarios," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    3. Bistline, John E., 2016. "Energy technology R&D portfolio management: Modeling uncertain returns and market diffusion," Applied Energy, Elsevier, vol. 183(C), pages 1181-1196.
    4. John Weyant & Elmar Kriegler, 2014. "Preface and introduction to EMF 27," Climatic Change, Springer, vol. 123(3), pages 345-352, April.
    5. John E. Bistline & Francisco Chesnaye, 2017. "Banking on banking: does “when” flexibility mask the costs of stringent climate policy?," Climatic Change, Springer, vol. 144(4), pages 597-610, October.
    6. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    7. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Oshiro, Ken & Kato, Etsushi & Kurosawa, Atsushi & Komiyama, Ryoichi & Silva Herran, Diego & Matsuo, Yuhji & Shiraki, Hiroto & Sakamoto, Shog, 2020. "EMF 35 JMIP study: preliminary results and implications for Japan’s climate change mitigation," Conference papers 333235, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Sands, Ronald D. & Malcolm, Scott A. & Suttles, Shellye A. & Marshall, Elizabeth, 2017. "Dedicated Energy Crops and Competition for Agricultural Land," Economic Research Report 252445, United States Department of Agriculture, Economic Research Service.
    9. Mai, Trieu & Cole, Wesley & Reimers, Andrew, 2019. "Setting cost targets for zero-emission electricity generation technologies," Applied Energy, Elsevier, vol. 250(C), pages 582-592.
    10. Gauthier de Maere d’Aertrycke & Yves Smeers & Hugues de Peufeilhoux & Pierre-Laurent Lucille, 2020. "The Role of Electrification in the Decarbonization of Central-Western Europe," Energies, MDPI, vol. 13(18), pages 1-20, September.
    11. Srinivasan, Shweta & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Mathur, Ritu & Clarke, Leon & Evans, Meredydd & Hejazi, Mohamad & Kanudia, Amit & Koti, Poonam Nagar & Liu, Bo & Parik, 2018. "Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation," Applied Energy, Elsevier, vol. 210(C), pages 673-684.
    12. Li, Jia & Just, Richard E., 2018. "Modeling household energy consumption and adoption of energy efficient technology," Energy Economics, Elsevier, vol. 72(C), pages 404-415.
    13. Ou, Yang & Shi, Wenjing & Smith, Steven J. & Ledna, Catherine M. & West, J. Jason & Nolte, Christopher G. & Loughlin, Daniel H., 2018. "Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution," Applied Energy, Elsevier, vol. 216(C), pages 482-493.
    14. Lantz, Eric & Mai, Trieu & Wiser, Ryan H. & Krishnan, Venkat, 2016. "Long-term implications of sustained wind power growth in the United States: Direct electric system impacts and costs," Applied Energy, Elsevier, vol. 179(C), pages 832-846.
    15. Allen A. Fawcett, Leon E. Clarke, and John P. Weyant, 2014. "Introduction to EMF 24," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    16. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    17. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Endo, Seiya & Fujii, Yasumasa & Komiyama, Ryoichi & Kato, Etsushi & Kurosawa, Atsushi & Matsuo, Yuhji & Oshiro, Ken & Sano, Fuminori & Shira, 2019. "Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges," Energy, Elsevier, vol. 167(C), pages 1120-1131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allen A. Fawcett, Leon E. Clarke, and John P. Weyant, 2014. "Introduction to EMF 24," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    3. Leon E. Clarke & Allen A. Fawcett & John P. Weyant & James McFarland & Vaibhav Chaturvedi & Yuyu Zhou, 2014. "Technology and U.S. Emissions Reductions Goals: Results of the EMF 24 Modeling Exercise," The Energy Journal, , vol. 35(1_suppl), pages 9-31, June.
    4. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    5. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    6. Jensen, Jesper & Tarr, David G., 2011. "Deep Trade Policy Options for Armenia: The Importance of Services, Trade Facilitation and Standards Liberalization," Conference papers 332083, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    8. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
    9. Ewelina Kochanek, 2021. "Evaluation of Energy Transition Scenarios in Poland," Energies, MDPI, vol. 14(19), pages 1-13, September.
    10. Giacomo Marangoni & Massimo Tavoni, 2014. "The Clean Energy R&D Strategy For 2°C," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-23.
    11. Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
    12. Misconel, S. & Leisen, R. & Mikurda, J. & Zimmermann, F. & Fraunholz, C. & Fichtner, W. & Möst, D. & Weber, C., 2022. "Systematic comparison of high-resolution electricity system modeling approaches focusing on investment, dispatch and generation adequacy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Carraro, Carlo & Aldy, Joseph & Pizer, William A. & Akimoto, Keigo & Tavoni, Massimo & Aleluia Reis, Lara, 2018. "Learning from Nationally Determined Contributions," CEPR Discussion Papers 12757, C.E.P.R. Discussion Papers.
    14. Matthias Weitzel, 2017. "The role of uncertainty in future costs of key CO2 abatement technologies: a sensitivity analysis with a global computable general equilibrium model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 153-173, January.
    15. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    16. Niven Winchester & John M. Reilly, 2019. "The Economic, Energy, And Emissions Impacts Of Climate Policy In South Korea," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-23, August.
    17. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    18. Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
    19. Tapia-Ahumada, Karen & Octaviano, Claudia & Rausch, Sebastian & Pérez-Arriaga, Ignacio, 2015. "Modeling intermittent renewable electricity technologies in general equilibrium models," Economic Modelling, Elsevier, vol. 51(C), pages 242-262.
    20. Kat, Bora & Paltsev, Sergey & Yuan, Mei, 2018. "Turkish energy sector development and the Paris Agreement goals: A CGE model assessment," Energy Policy, Elsevier, vol. 122(C), pages 84-96.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej35-si1-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.