IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i5p803-d211099.html
   My bibliography  Save this article

The Role of Vertical Transmission in the Control of Dengue Fever

Author

Listed:
  • David Murillo

    (Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287, USA)

  • Anarina Murillo

    (Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287, USA)

  • Sunmi Lee

    (Department of Applied Mathematics, Kyung Hee University, Yongin 446-701, Korea
    Institute of Natural Sciences, Kyung Hee University, Yongin 446-701, Korea)

Abstract

In this work, a two-strain dengue model with vertical transmission in the mosquito population is considered. Although vertical transmission is often ignored in models of dengue fever, we show that effective control of an outbreak of dengue can depend on whether or not the vertical transmission is a significant mode of disease transmission. We model the effect of a control strategy aimed at reducing human-mosquito transmissions in an optimal control framework. As the likelihood of vertical transmission increases, outbreaks become more difficult and expensive to control. However, even for low levels of vertical transmission, the additional, uncontrolled, transmission from infected mosquito to eggs may undercut the effectiveness of any control function. This is of particular importance in regions where existing control policies may be effective and the endemic strain does not exhibit vertical transmission. If a novel strain that does exhibit vertical transmission invades, then existing, formerly effective, control policies may no longer be sufficient. Therefore, public health officials should pay more attention to the role of vertical transmission for more effective interventions and policy.

Suggested Citation

  • David Murillo & Anarina Murillo & Sunmi Lee, 2019. "The Role of Vertical Transmission in the Control of Dengue Fever," IJERPH, MDPI, vol. 16(5), pages 1-17, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:803-:d:211099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/5/803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/5/803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Lee, S. & Jung, E. & Castillo-Chavez, C., 2010. "Optimal control intervention strategies in low- and high-risk problem drinking populations," Socio-Economic Planning Sciences, Elsevier, vol. 44(4), pages 258-265, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    2. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    4. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    5. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    6. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    7. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    8. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    9. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    10. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    11. Emma Taylor-Salmon & Verity Hill & Lauren M. Paul & Robert T. Koch & Mallery I. Breban & Chrispin Chaguza & Afeez Sodeinde & Joshua L. Warren & Sylvia Bunch & Natalia Cano & Marshall Cone & Sarah Eyso, 2024. "Travel surveillance uncovers dengue virus dynamics and introductions in the Caribbean," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Mohd Hanief Ahmad & Mohd Ismail Ibrahim & Zeehaida Mohamed & Nabilah Ismail & Muhammad Amiruddin Abdullah & Rafidah Hanim Shueb & Mohd Nazri Shafei, 2018. "The Sensitivity, Specificity and Accuracy of Warning Signs in Predicting Severe Dengue, the Severe Dengue Prevalence and Its Associated Factors," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    13. Víctor Hugo Peña-García & Omar Triana-Chávez & Ana María Mejía-Jaramillo & Francisco J. Díaz & Andrés Gómez-Palacio & Sair Arboleda-Sánchez, 2016. "Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities," IJERPH, MDPI, vol. 13(7), pages 1-16, July.
    14. Amanda C. Walsh, 2019. "Impacts of Dengue Epidemics on Household Labor Market Outcomes," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 684-702, December.
    15. Beibei Li & Ruonan Ma & Lei Chen & Caiyu Zhou & Yu-Xiao Zhang & Xiaonan Wang & Helai Huang & Qikun Hu & Xiaobo Zheng & Jiarui Yang & Mengjuan Shao & Pengfei Hao & Yanfen Wu & Yizhen Che & Chang Li & T, 2023. "Diatomic iron nanozyme with lipoxidase-like activity for efficient inactivation of enveloped virus," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Auliya A. Suwantika & Angga P. Kautsar & Woro Supadmi & Neily Zakiyah & Rizky Abdulah & Mohammad Ali & Maarten J. Postma, 2020. "Cost-Effectiveness of Dengue Vaccination in Indonesia: Considering Integrated Programs with Wolbachia -Infected Mosquitos and Health Education," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    17. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    18. Sumaira Zafar & Oleg Shipin & Richard E. Paul & Joacim Rocklöv & Ubydul Haque & Md. Siddikur Rahman & Mayfong Mayxay & Chamsai Pientong & Sirinart Aromseree & Petchaboon Poolphol & Tiengkham Pongvongs, 2021. "Development and Comparison of Dengue Vulnerability Indices Using GIS-Based Multi-Criteria Decision Analysis in Lao PDR and Thailand," IJERPH, MDPI, vol. 18(17), pages 1-25, September.
    19. Nicholas J Martin & Philip A Smith & Nicole L Achee & Gerald T DeLong, 2013. "Determining Airborne Concentrations of Spatial Repellent Chemicals in Mosquito Behavior Assay Systems," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-7, August.
    20. Naveed Heydari & David A. Larsen & Marco Neira & Efraín Beltrán Ayala & Prissila Fernandez & Jefferson Adrian & Rosemary Rochford & Anna M. Stewart-Ibarra, 2017. "Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador," IJERPH, MDPI, vol. 14(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:803-:d:211099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.