IDEAS home Printed from https://ideas.repec.org/r/wsi/wschap/9789814374378_0002.html
   My bibliography  Save this item

Interfuel Substitution in the United States

In: Interfuel Substitution

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lin Zhao, 2023. "The impact of China's Differential Electricity Pricing policy on fossil fuel consumption," International Studies of Economics, John Wiley & Sons, vol. 18(1), pages 97-119, March.
  2. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
  3. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
  4. Suh, Dong Hee, 2016. "Interfuel substitution and biomass use in the U.S. industrial sector: A differential approach," Energy, Elsevier, vol. 102(C), pages 24-30.
  5. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
  6. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
  7. Xingang, Zhao & Pingkuo, Liu, 2013. "Substitution among energy sources: An empirical analysis on biomass energy for fossil fuel of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 194-202.
  8. Monia Landolsi & Kamel Bel Hadj Miled, 2024. "Semi-Nonparametric Estimation of Energy Demand in Tunisia," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 254-263, January.
  9. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  10. Kotchen, Matthew J. & Levinson, Arik, 2023. "When Can Benefit–Cost Analyses Ignore Secondary Markets?," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 14(1), pages 114-140, March.
  11. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
  12. Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.
  13. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
  14. Lin, Boqiang & Zhu, Runqing & Raza, Muhammad Yousaf, 2022. "Fuel substitution and environmental sustainability in India: Perspectives of technical progress," Energy, Elsevier, vol. 261(PB).
  15. Opeyemi Bello, Mufutau & Adebola Solarin, Sakiru & Yee Yen, Yuen, 2018. "Interfuel Substitution, Hydroelectricity Consumption and CO2 Emissions Mitigation in Malaysia: Evidence from a Transcendental Logarithm (trans-log) Cost Function Framework," Working Papers 4, Department of Economics, University of Ilorin.
  16. Blazquez, Jorge & Galeotti, Marzio & Manzano, Baltasar & Pierru, Axel & Pradhan, Shreekar, 2021. "Effects of Saudi Arabia’s economic reforms: Insights from a DSGE model," Economic Modelling, Elsevier, vol. 95(C), pages 145-169.
  17. Ravago, Majah-Leah V. & Fabella, Raul V. & Jandoc, Karl Robert L. & Frias, Renzi G. & Magadia, J. Kathleen P., 2021. "Gauging the market potential for natural gas among Philippine manufacturing firms," Energy, Elsevier, vol. 237(C).
  18. Orlov, Anton & Aaheim, Asbjørn, 2017. "Economy-wide effects of international and Russia's climate policies," Energy Economics, Elsevier, vol. 68(C), pages 466-477.
  19. Bardazzi, Rossella & Oropallo, Filippo & Pazienza, Maria Grazia, 2015. "Do manufacturing firms react to energy prices? Evidence from Italy," Energy Economics, Elsevier, vol. 49(C), pages 168-181.
  20. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
  21. KITAMURA Toshihiko & MANAGI Shunsuke, 2016. "Substitution between Purchased Electricity and Fuel for Onsite Power Generation in the Manufacturing Industry: Plant level analysis in Japan," Discussion papers 16007, Research Institute of Economy, Trade and Industry (RIETI).
  22. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
  23. Timothy J. Considine & Edward J. M. Manderson, 2013. "The Cost of Solar-Centric Renewable Portfolio Standards," Economics Discussion Paper Series 1323, Economics, The University of Manchester.
  24. Maura Allaire and Stephen P. A. Brown, 2015. "The Green Paradox of U.S. Biofuel Subsidies: Impact on Greenhouse Gas Emissions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
  25. Prest, Brian C. & Fell, Harrison & Gordon, Deborah & Conway, TJ, 2024. "Estimating the emissions reductions from supply-side fossil fuel interventions," Energy Economics, Elsevier, vol. 136(C).
  26. Rowland, Christopher S. & Mjelde, James W. & Dharmasena, Senarath, 2017. "Policy implications of considering pre-commitments in U.S. aggregate energy demand system," Energy Policy, Elsevier, vol. 102(C), pages 406-413.
  27. Yang, Zhenbing & Shao, Shuai & Yang, Lili & Miao, Zhuang, 2018. "Improvement pathway of energy consumption structure in China's industrial sector: From the perspective of directed technical change," Energy Economics, Elsevier, vol. 72(C), pages 166-176.
  28. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
  29. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
  30. Thomas Michielsen, 2013. "Brown Backstops Versus the Green Paradox," OxCarre Working Papers 108, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
  31. Lin, Boqiang & Atsagli, Philip, 2017. "Inter-fuel substitution possibilities in South Africa: A translog production function approach," Energy, Elsevier, vol. 121(C), pages 822-831.
  32. Atalla, Tarek & Blazquez, Jorge & Hunt, Lester C. & Manzano, Baltasar, 2017. "Prices versus policy: An analysis of the drivers of the primary fossil fuel mix," Energy Policy, Elsevier, vol. 106(C), pages 536-546.
  33. Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
  34. Shahiduzzaman, M.D. & Alam, Khorshed, 2014. "Interfuel substitution in Australia: a way forward to achieve environmental sustainability," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
  35. Li, Jianglong & Sun, Chuanwang, 2018. "Towards a low carbon economy by removing fossil fuel subsidies?," China Economic Review, Elsevier, vol. 50(C), pages 17-33.
  36. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
  37. Shahiduzzaman, Md. & Layton, Allan, 2015. "Changes in CO2 emissions over business cycle recessions and expansions in the United States: A decomposition analysis," Applied Energy, Elsevier, vol. 150(C), pages 25-35.
  38. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
  39. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.
  40. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
  41. Serletis, Apostolos & Xu, Libo, 2016. "Volatility and a century of energy markets dynamics," Energy Economics, Elsevier, vol. 55(C), pages 1-9.
  42. Liu, Boying & Shumway, C. Richard & Yoder, Jonathan K., 2017. "Lifecycle economic analysis of biofuels: Accounting for economic substitution in policy assessment," Energy Economics, Elsevier, vol. 67(C), pages 146-158.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.