IDEAS home Printed from https://ideas.repec.org/p/ris/decilo/0004.html
   My bibliography  Save this paper

Interfuel Substitution, Hydroelectricity Consumption and CO2 Emissions Mitigation in Malaysia: Evidence from a Transcendental Logarithm (trans-log) Cost Function Framework

Author

Listed:

Abstract

The main objective of this paper is to estimate the interfuel substitution elasticities between hydropower and the fossil fuels of coal and natural gas used in the generation of electricity for Malaysia. Due to the violation of the OLS method on account of the correlated error terms in the system of equations, the econometrics techniques of seemingly unrelated regression (SUR) was adopted to obtain the parameter estimates using dataset that covers the period 1988 to 2016. The main finding is that there exists substantial substitution possibility between hydropower and fossil fuels in the generation of electricity for Malaysia. CO2 emissions mitigation scenarios were also conducted to explore the possible effects of substituting fossil fuels for hydropower to generate electricity. The results show that switching from high carbon emitting fuels to renewable energy such as hydropower will substantially reduce CO2 emission and assist the country towards achieving the carbon emissions reduction targets. Policy recommendations are offered in the body of the manuscript.

Suggested Citation

  • Opeyemi Bello, Mufutau & Adebola Solarin, Sakiru & Yee Yen, Yuen, 2018. "Interfuel Substitution, Hydroelectricity Consumption and CO2 Emissions Mitigation in Malaysia: Evidence from a Transcendental Logarithm (trans-log) Cost Function Framework," Working Papers 4, Department of Economics, University of Ilorin.
  • Handle: RePEc:ris:decilo:0004
    as

    Download full text from publisher

    File URL: http://unilorineconsworkingpapers.com.ng/download/WORKING%20PAPER5.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vlachou, A. S. & Samouilidis, E. J., 1986. "Interfuel substitution : Results from several sectors of the Greek economy," Energy Economics, Elsevier, vol. 8(1), pages 39-45, January.
    2. Yingying Lu & David I. Stern, 2016. "Substitutability and the Cost of Climate Mitigation Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 81-107, May.
    3. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    4. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    5. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    6. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    7. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.
    8. Yang, Mian & Fan, Ying & Yang, Fuxia & Hu, Hui, 2014. "Regional disparities in carbon dioxide reduction from China's uniform carbon tax: A perspective on interfactor/interfuel substitution," Energy, Elsevier, vol. 74(C), pages 131-139.
    9. Lin, Boqiang & Ankrah, Isaac, 2019. "On Nigeria's renewable energy program: Examining the effectiveness, substitution potential, and the impact on national output," Energy, Elsevier, vol. 167(C), pages 1181-1193.
    10. Griffin, James M & Gregory, Paul R, 1976. "An Intercountry Translog Model of Energy Substitution Responses," American Economic Review, American Economic Association, vol. 66(5), pages 845-857, December.
    11. Uri, Noel D., 1979. "Energy demand and interfuel substitution in India," European Economic Review, Elsevier, vol. 12(2), pages 181-190, April.
    12. Moore, Steven & Durant, Vincent & Mabee, Warren E., 2013. "Determining appropriate feed-in tariff rates to promote biomass-to-electricity generation in Eastern Ontario, Canada," Energy Policy, Elsevier, vol. 63(C), pages 607-613.
    13. Chambers,Robert G., 1988. "Applied Production Analysis," Cambridge Books, Cambridge University Press, number 9780521314275, September.
    14. Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
    15. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    16. Joeri Rogelj & David L. McCollum & Andy Reisinger & Malte Meinshausen & Keywan Riahi, 2013. "Probabilistic cost estimates for climate change mitigation," Nature, Nature, vol. 493(7430), pages 79-83, January.
    17. Lin, Boqiang & Atsagli, Philip, 2017. "Energy consumption, inter-fuel substitution and economic growth in Nigeria," Energy, Elsevier, vol. 120(C), pages 675-685.
    18. Berndt, Ernst R & Christensen, Laurits R, 1974. "Testing for the Existence of a Consistent Aggregate Index of Labor Inputs," American Economic Review, American Economic Association, vol. 64(3), pages 391-404, June.
    19. Tsita, Katerina G. & Pilavachi, Petros A., 2013. "Evaluation of next generation biomass derived fuels for the transport sector," Energy Policy, Elsevier, vol. 62(C), pages 443-455.
    20. Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.
    21. Wesseh, Presley K. & Lin, Boqiang, 2018. "Energy consumption, fuel substitution, technical change, and economic growth: Implications for CO2 mitigation in Egypt," Energy Policy, Elsevier, vol. 117(C), pages 340-347.
    22. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    23. Suh, Dong Hee, 2016. "Interfuel substitution and biomass use in the U.S. industrial sector: A differential approach," Energy, Elsevier, vol. 102(C), pages 24-30.
    24. Hirofumi Uzawa, 1962. "Production Functions with Constant Elasticities of Substitution," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(4), pages 291-299.
    25. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
    26. Prywes, Menahem, 1986. "A nested CES approach to capital-energy substitution," Energy Economics, Elsevier, vol. 8(1), pages 22-28, January.
    27. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mufutau Opeyemi, Bello, 2021. "Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy," Energy, Elsevier, vol. 228(C).
    2. Bello, Mufutau Opeyemi & Ch'ng, Kean Siang, 2024. "Path to clean and sustainable energy from nuclear and renewable sources: Evidence from France," Utilities Policy, Elsevier, vol. 88(C).
    3. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    4. Lin, Boqiang & Zhu, Runqing & Raza, Muhammad Yousaf, 2022. "Fuel substitution and environmental sustainability in India: Perspectives of technical progress," Energy, Elsevier, vol. 261(PB).
    5. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    6. Sharimakin, Akinsehinwa, 2019. "Measuring the energy input substitution and output effects of energy price changes and the implications for the environment," Energy Policy, Elsevier, vol. 133(C).
    7. Muhammad Yousaf Raza & Songlin Tang, 2022. "Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis," Energies, MDPI, vol. 15(22), pages 1-20, November.
    8. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    9. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    10. Liu, Weisheng & Lin, Boqiang, 2021. "Electrification of rails in China: Its impact on energy conservation and emission reduction," Energy, Elsevier, vol. 226(C).
    11. Agyeman, Stephen Duah & Lin, Boqiang, 2022. "Nonrenewable and renewable energy substitution, and low–carbon energy transition: Evidence from North African countries," Renewable Energy, Elsevier, vol. 194(C), pages 378-395.
    12. Mufutau Opeyemi Bello & Sakiru Adebola Solarin, 2022. "Searching for sustainable electricity generation: The possibility of substituting coal and natural gas with clean energy," Energy & Environment, , vol. 33(1), pages 64-84, February.
    13. Shahiduzzaman, M.D. & Alam, Khorshed, 2014. "Interfuel substitution in Australia: a way forward to achieve environmental sustainability," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
    14. Lin, Boqiang & Atsagli, Philip, 2017. "Energy consumption, inter-fuel substitution and economic growth in Nigeria," Energy, Elsevier, vol. 120(C), pages 675-685.
    15. Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
    16. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
    17. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
    18. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    19. Hossain, A. K. M. Nurul & Serletis, Apostolos, 2020. "Biofuel substitution in the U.S. transportation sector," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    20. Boqiang Lin & Kui Liu, 2017. "Energy Substitution Effect on China’s Heavy Industry: Perspectives of a Translog Production Function and Ridge Regression," Sustainability, MDPI, vol. 9(11), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:decilo:0004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniel Akanbi (email available below). General contact details of provider: https://edirc.repec.org/data/deilong.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.