IDEAS home Printed from https://ideas.repec.org/r/wly/jfutmk/v26y2006i3p297-313.html
   My bibliography  Save this item

Testing range estimators of historical volatility

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Junni L. Zhang & Wolfgang Karl Hardle & Cathy Y. Chen & Elisabeth Bommes, 2020. "Distillation of News Flow into Analysis of Stock Reactions," Papers 2009.10392, arXiv.org.
  2. Gábor Petneházi & József Gáll, 2019. "Exploring the predictability of range‐based volatility estimators using recurrent neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(3), pages 109-116, July.
  3. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2016. "Volatility spillovers across stock index futures in Asian markets: Evidence from range volatility estimators," Finance Research Letters, Elsevier, vol. 17(C), pages 158-166.
  4. Rui Liu & Jiayou Liang & Haolong Chen & Yujia Hu, 2024. "Analyst Reports and Stock Performance: Evidence from the Chinese Market," Papers 2411.08726, arXiv.org.
  5. Grobys, Klaus, 2024. "A universal exponent governing foreign exchange rate risks," International Review of Financial Analysis, Elsevier, vol. 95(PB).
  6. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).
  7. Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718, December.
  8. Wu, Ming & Ohk, Ki Yool, 2023. "Who benefits more? Shanghai-Hong Kong stock Connect—“Through Train”," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 409-427.
  9. Fan, Qingqian & Feng, Sixian, 2022. "An empirical study on the characterization of implied volatility and pricing in the Chinese option market," Finance Research Letters, Elsevier, vol. 49(C).
  10. Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020. "Prediction regions for interval‐valued time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
  11. Mazza, Paolo & Petitjean, Mikael, 2016. "On the usefulness of intraday price ranges to gauge liquidity in cap-based portfolios," Economic Modelling, Elsevier, vol. 54(C), pages 67-81.
  12. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
  13. Padmakumari, Lakshmi & S., Maheswaran, 2017. "A new statistic to capture the level dependence in stock price volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 355-362.
  14. Bommes, Elisabeth & Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl, 2018. "Textual Sentiment and Sector specific reaction," IRTG 1792 Discussion Papers 2018-043, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  15. OlaOluwa S. Yaya & Xuan Vinh Vo & Ahamuefula E. Ogbonna & Adeolu O. Adewuyi, 2022. "Modelling cryptocurrency high–low prices using fractional cointegrating VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 489-505, January.
  16. Rodolfo C. Moura & Márcio P. Laurini, 2021. "Spillovers and jumps in global markets: A comparative analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5997-6013, October.
  17. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
  18. Parthajit Kayal & Sumanjay Dutta & Vipul Khandelwal & Rakesh Nigam, 2021. "Information Theoretic Ranking of Extreme Value Returns," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 1-21, March.
  19. Batten, Jonathan A. & Lončarski, Igor & Szilagyi, Peter G., 2021. "Strategic insider trading in foreign exchange markets," Journal of Corporate Finance, Elsevier, vol. 69(C).
  20. Muhammad Owais Qarni & Saiqb Gulzar, 2021. "Portfolio diversification benefits of alternative currency investment in Bitcoin and foreign exchange markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-37, December.
  21. José Luis Miralles-Quirós & María Mar Miralles-Quirós, 2021. "Alternative Financial Methods for Improving the Investment in Renewable Energy Companies," Mathematics, MDPI, vol. 9(9), pages 1-25, May.
  22. Díaz-Mendoza, Ana-Carmen & Pardo, Angel, 2020. "Holidays, weekends and range-based volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
  23. Eduardo Rossi & Paolo Santucci de Magistris, 2013. "A No‐Arbitrage Fractional Cointegration Model for Futures and Spot Daily Ranges," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(1), pages 77-102, January.
  24. Aris Kartsaklas, 2018. "Trader Type Effects On The Volatility‐Volume Relationship Evidence From The Kospi 200 Index Futures Market," Bulletin of Economic Research, Wiley Blackwell, vol. 70(3), pages 226-250, July.
  25. Neda Todorova, 2012. "Volatility estimators based on daily price ranges versus the realized range," Applied Financial Economics, Taylor & Francis Journals, vol. 22(3), pages 215-229, February.
  26. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
  27. I‐Ming Jiang & Jui‐Cheng Hung & Chuan‐San Wang, 2014. "Volatility Forecasts: Do Volatility Estimators and Evaluation Methods Matter?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(11), pages 1077-1094, November.
  28. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
  29. Grobys, Klaus, 2021. "What do we know about the second moment of financial markets?," International Review of Financial Analysis, Elsevier, vol. 78(C).
  30. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.
  31. Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
  32. Giray GOZGOR & Cahit MEMIS, 2015. "Price volatility spillovers among agricultural commodity and crude oil markets: Evidence from the range-based estimator," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(5), pages 214-221.
  33. G'abor Petneh'azi & J'ozsef G'all, 2018. "Exploring the predictability of range-based volatility estimators using RNNs," Papers 1803.07152, arXiv.org.
  34. Fałdziński, Marcin & Fiszeder, Piotr & Molnár, Peter, 2024. "Improving volatility forecasts: Evidence from range-based models," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
  35. Zaremba, Adam, 2019. "Price range and the cross-section of expected country and industry returns," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 174-189.
  36. Saad Mouti, 2023. "Rough volatility: evidence from range volatility estimators," Papers 2312.01426, arXiv.org, revised Sep 2024.
  37. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2016. "Intra- and inter-regional return and volatility spillovers across emerging and developed markets: Evidence from stock indices and stock index futures," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 96-114.
  38. Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
  39. Ferreruela, Sandra & Mallor, Tania, 2021. "Herding in the bad times: The 2008 and COVID-19 crises," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
  40. Bhaumik, S. & Karanasos, M. & Kartsaklas, A., 2016. "The informative role of trading volume in an expanding spot and futures market," Journal of Multinational Financial Management, Elsevier, vol. 35(C), pages 24-40.
  41. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
  42. Zhang, Junni L. & Härdle, Wolfgang Karl & Chen, Cathy Y. & Bommes, Elisabeth, 2015. "Distillation of news flow into analysis of stock reactions," SFB 649 Discussion Papers 2015-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  43. Parthajit Kayal & Sumanjay Dutta & Vipul Khandelwal, "undated". "Information Theoretic Ranking of Extreme Value Returns," Working Papers 2020-195, Madras School of Economics,Chennai,India.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.