IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v26y2019i3p109-116.html
   My bibliography  Save this article

Exploring the predictability of range‐based volatility estimators using recurrent neural networks

Author

Listed:
  • Gábor Petneházi
  • József Gáll

Abstract

We investigate the predictability of several range‐based stock volatility estimates and compare them with the standard close‐to‐close estimate, which is most commonly acknowledged as the volatility. The patterns of volatility changes are analysed using long short‐term memory recurrent neural networks, which are a state‐of‐the‐art method of sequence learning. We implement the analysis on all current constituents of the Dow Jones Industrial Average index and report averaged evaluation results. We find that the direction of changes in the values of range‐based estimates are more predictable than that of the estimate from daily closing values only.

Suggested Citation

  • Gábor Petneházi & József Gáll, 2019. "Exploring the predictability of range‐based volatility estimators using recurrent neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(3), pages 109-116, July.
  • Handle: RePEc:wly:isacfm:v:26:y:2019:i:3:p:109-116
    DOI: 10.1002/isaf.1455
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1455
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    2. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    3. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    4. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    5. Satchell, Stephen & Knight, John, 2007. "Forecasting Volatility in the Financial Markets," Elsevier Monographs, Elsevier, edition 3, number 9780750669429.
    6. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    7. Jinghong Shu & Jin E. Zhang, 2006. "Testing range estimators of historical volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 297-313, March.
    8. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    9. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    10. Peter Molnár, 2016. "High-low range in GARCH models of stock return volatility," Applied Economics, Taylor & Francis Journals, vol. 48(51), pages 4977-4991, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    2. G'abor Petneh'azi & J'ozsef G'all, 2018. "Exploring the predictability of range-based volatility estimators using RNNs," Papers 1803.07152, arXiv.org.
    3. José Luis Miralles-Quirós & María Mar Miralles-Quirós, 2021. "Alternative Financial Methods for Improving the Investment in Renewable Energy Companies," Mathematics, MDPI, vol. 9(9), pages 1-25, May.
    4. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    5. Neda Todorova, 2012. "Volatility estimators based on daily price ranges versus the realized range," Applied Financial Economics, Taylor & Francis Journals, vol. 22(3), pages 215-229, February.
    6. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    7. Bhaumik, S. & Karanasos, M. & Kartsaklas, A., 2016. "The informative role of trading volume in an expanding spot and futures market," Journal of Multinational Financial Management, Elsevier, vol. 35(C), pages 24-40.
    8. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "Emerging versus developed volatility indices. The comparison of VIW20 and VIX indices," Working Papers 2009-11, Faculty of Economic Sciences, University of Warsaw.
    9. Aris Kartsaklas, 2018. "Trader Type Effects On The Volatility‐Volume Relationship Evidence From The Kospi 200 Index Futures Market," Bulletin of Economic Research, Wiley Blackwell, vol. 70(3), pages 226-250, July.
    10. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    11. Díaz-Mendoza, Ana-Carmen & Pardo, Angel, 2020. "Holidays, weekends and range-based volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    12. Saad Mouti, 2023. "Rough volatility: evidence from range volatility estimators," Papers 2312.01426, arXiv.org, revised Sep 2024.
    13. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    14. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).
    15. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    16. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    17. Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718, December.
    18. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    19. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    20. Parthajit Kayal & Sumanjay Dutta & Vipul Khandelwal & Rakesh Nigam, 2021. "Information Theoretic Ranking of Extreme Value Returns," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 1-21, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:26:y:2019:i:3:p:109-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.