IDEAS home Printed from https://ideas.repec.org/r/spr/waterr/v15y2001i5p299-321.html
   My bibliography  Save this item

Short-Term Water Demand Forecast Modelling at IIT Kanpur Using Artificial Neural Networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. George Panagopoulos & George Bathrellos & Hariklia Skilodimou & Faini Martsouka, 2012. "Mapping Urban Water Demands Using Multi-Criteria Analysis and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1347-1363, March.
  2. Mouatadid, Soukayna & Adamowski, Jan F. & Tiwari, Mukesh K. & Quilty, John M., 2019. "Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting," Agricultural Water Management, Elsevier, vol. 219(C), pages 72-85.
  3. Misgana Muleta & John Nicklow, 2004. "Joint Application of Artificial Neural Networks and Evolutionary Algorithms to Watershed Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 459-482, October.
  4. Md Haque & Ataur Rahman & Dharma Hagare & Golam Kibria, 2014. "Probabilistic Water Demand Forecasting Using Projected Climatic Data for Blue Mountains Water Supply System in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1959-1971, May.
  5. Abdüsselam Altunkaynak, 2007. "Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 399-408, February.
  6. E. Pacchin & F. Gagliardi & S. Alvisi & M. Franchini, 2019. "A Comparison of Short-Term Water Demand Forecasting Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1481-1497, March.
  7. Vinit Sehgal & Rajeev Sahay & Chandranath Chatterjee, 2014. "Effect of Utilization of Discrete Wavelet Components on Flood Forecasting Performance of Wavelet Based ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1733-1749, April.
  8. Mukand Babel & Victor Shinde, 2011. "Identifying Prominent Explanatory Variables for Water Demand Prediction Using Artificial Neural Networks: A Case Study of Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1653-1676, April.
  9. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
  10. Sholpan Saimova & Gulsim Makenova & Aizhan Skakova & Aitolkyn Moldagaliyeva & Ardak Beisembinova & Zhamilya Berdiyarova & Bagdagul Imanbekova, 2020. "Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 638-646.
  11. Thomas M Fullerton Jr & Arturo Elias, 2004. "Short-Term Water Consumption Dynamics in El Paso, Texas," Others 0410005, University Library of Munich, Germany.
  12. Sanjeet Kumar & Mukesh Tiwari & Chandranath Chatterjee & Ashok Mishra, 2015. "Reservoir Inflow Forecasting Using Ensemble Models Based on Neural Networks, Wavelet Analysis and Bootstrap Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4863-4883, October.
  13. Dongwoo Jang & Gyewoon Choi, 2017. "Estimation of Non-Revenue Water Ratio for Sustainable Management Using Artificial Neural Network and Z-Score in Incheon, Republic of Korea," Sustainability, MDPI, vol. 9(11), pages 1-15, October.
  14. Dong-Her Shih & Ching-Hsien Liao & Ting-Wei Wu & Huan-Shuo Chang & Ming-Hung Shih, 2022. "WSI: A New Early Warning Water Survival Index for the Domestic Water Demand," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
  15. Thomas Fullerton & Roberto Tinajero & Jorge Mendoza Cota, 2007. "An Empirical Analysis of Tijuana Water Consumption," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 35(3), pages 357-369, September.
  16. Shenlin Li & Xiaohong Chen & Vijay P. Singh & Yanhu He, 2018. "Assumption-Simulation-Feedback-Adjustment (ASFA) Framework for Real-Time Correction of Water Resources Allocation: a Case Study of Longgang River Basin in Southern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3871-3886, September.
  17. Vinit Sehgal & Mukesh Tiwari & Chandranath Chatterjee, 2014. "Wavelet Bootstrap Multiple Linear Regression Based Hybrid Modeling for Daily River Discharge Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2793-2811, August.
  18. Azar Niknam & Hasan Khademi Zare & Hassan Hosseininasab & Ali Mostafaeipour & Manuel Herrera, 2022. "A Critical Review of Short-Term Water Demand Forecasting Tools—What Method Should I Use?," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
  19. Salah L. Zubaidi & Sadik K. Gharghan & Jayne Dooley & Rafid M. Alkhaddar & Mawada Abdellatif, 2018. "Short-Term Urban Water Demand Prediction Considering Weather Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4527-4542, November.
  20. Mohamed Mohamed & Aysha Al-Mualla, 2010. "Water Demand Forecasting in Umm Al-Quwain (UAE) Using the IWR-MAIN Specify Forecasting Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4093-4120, November.
  21. Mahmut Firat & Mehmet Yurdusev & Mustafa Turan, 2009. "Evaluation of Artificial Neural Network Techniques for Municipal Water Consumption Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 617-632, March.
  22. Inmaculada Pulido-Calvo & Juan Gutiérrez-Estrada & Dragan Savic, 2012. "Heuristic Modelling of the Water Resources Management in the Guadalquivir River Basin, Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 185-209, January.
  23. Fullerton, Thomas M., Jr. & White, Katherine & Smith, Wm. Doyle & Walke, Adam G., 2012. "An Empirical Analysis of Halifax Municipal Water Consumption," MPRA Paper 54113, University Library of Munich, Germany, revised 14 Mar 2013.
  24. Abdüsselam Altunkaynak & Mehmet Özger & Mehmet Çakmakci, 2005. "Water Consumption Prediction of Istanbul City by Using Fuzzy Logic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 641-654, October.
  25. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
  26. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
  27. Caiado, Jorge, 2007. "Forecasting water consumption in Spain using univariate time series models," MPRA Paper 6610, University Library of Munich, Germany.
  28. Mukand Babel & Nisuchcha Maporn & Victor Shinde, 2014. "Incorporating Future Climatic and Socioeconomic Variables in Water Demand Forecasting: A Case Study in Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2049-2062, May.
  29. Sankhadeep Chatterjee & Sarbartha Sarkar & Nilanjan Dey & Soumya Sen, 2018. "Non-Dominated Sorting Genetic Algorithm-II-Induced Neural-Supported Prediction of Water Quality with Stability Analysis," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-20, June.
  30. Coelho, B. & Andrade-Campos, A., 2014. "Efficiency achievement in water supply systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 59-84.
  31. Haidong Huang & Zhixiong Zhang & Fengxuan Song, 2021. "An Ensemble-Learning-Based Method for Short-Term Water Demand Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1757-1773, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.