IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i12d10.1007_s11269-018-2024-3.html
   My bibliography  Save this article

Assumption-Simulation-Feedback-Adjustment (ASFA) Framework for Real-Time Correction of Water Resources Allocation: a Case Study of Longgang River Basin in Southern China

Author

Listed:
  • Shenlin Li

    (Sun Yat-sen University
    Sun Yat-sen University
    Sun Yat-sen University
    Texas A&M University)

  • Xiaohong Chen

    (Sun Yat-sen University
    Sun Yat-sen University
    Sun Yat-sen University)

  • Vijay P. Singh

    (Texas A&M University)

  • Yanhu He

    (Sun Yat-sen University
    Sun Yat-sen University
    Sun Yat-sen University)

Abstract

Water resources allocation is subject to uncertain future conditions and therefore needs real-time correction. This study develops a framework of “assumption-simulation-feedback-adjustment” (ASFA) for real-time correction of water resources allocation. The assumption component constructs a water resources allocation model and generates initial allocation solution (IAS); the simulation component applies IAS in a real-time hydrological scenario; the performance information is input into the feedback component. Three feedback functions, including gain function, correlation function, and least square function, are employed to deal with the information, and the value of output gain is determined for the adjustment component. The result then is a feedback allocation solution (FAS). This study applied ASFA to Longgang River basin, China, as a case study, compared FASs generated by three different feedback functions as well as IAS. Results showed that FAS generated by the gain function (FAS_GF) performed better with a higher assurance rate and less risk of continuous water shortage. Results also showed that to achieve the same management requirement, FAS_GF had a lower requirement of the amount of diverted water, indicating that the ASFA framework can make better use of water resources and reduce the pressure of diverted water. The ASFA framework builds a feedback mechanism for real-time correction of water resources allocation, provides a novel perspective for addressing the challenge of future uncertainty, which significantly improves the solutions of water allocation.

Suggested Citation

  • Shenlin Li & Xiaohong Chen & Vijay P. Singh & Yanhu He, 2018. "Assumption-Simulation-Feedback-Adjustment (ASFA) Framework for Real-Time Correction of Water Resources Allocation: a Case Study of Longgang River Basin in Southern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3871-3886, September.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:12:d:10.1007_s11269-018-2024-3
    DOI: 10.1007/s11269-018-2024-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2024-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2024-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhangjun Liu & Shenglian Guo & Honggang Zhang & Dedi Liu & Guang Yang, 2016. "Comparative Study of Three Updating Procedures for Real-Time Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2111-2126, May.
    2. Issam Nouiri, 2014. "Multi-Objective tool to optimize the Water Resources Management using Genetic Algorithm and the Pareto Optimality Concept," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2885-2901, August.
    3. M. Habibi Davijani & M. E. Banihabib & A. Nadjafzadeh Anvar & S. R. Hashemi, 2016. "Multi-Objective Optimization Model for the Allocation of Water Resources in Arid Regions Based on the Maximization of Socioeconomic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 927-946, February.
    4. Dedi Liu & Xiaohong Chen & Zhanghua Lou, 2010. "A Model for the Optimal Allocation of Water Resources in a Saltwater Intrusion Area: A Case Study in Pearl River Delta in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 63-81, January.
    5. Ashu Jain & Ashish Kumar Varshney & Umesh Chandra Joshi, 2001. "Short-Term Water Demand Forecast Modelling at IIT Kanpur Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(5), pages 299-321, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Yan & Saskia E. Werners & He Qing Huang & Fulco Ludwig, 2016. "Identifying and Assessing Robust Water Allocation Plans for Deltas Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5421-5435, November.
    2. Amir Hatamkhani & Ali Moridi, 2021. "Optimal Development of Agricultural Sectors in the Basin Based on Economic Efficiency and Social Equality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 917-932, February.
    3. Songsong Liu & Lazaros Papageorgiou & Petros Gikas, 2012. "Integrated Management of Non-conventional Water Resources in Anhydrous Islands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 359-375, January.
    4. Issam Nouiri & Muluneh Yitayew & Jobst Maßmann & Jamila Tarhouni, 2015. "Multi-objective Optimization Tool for Integrated Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5353-5375, November.
    5. Sholpan Saimova & Gulsim Makenova & Aizhan Skakova & Aitolkyn Moldagaliyeva & Ardak Beisembinova & Zhamilya Berdiyarova & Bagdagul Imanbekova, 2020. "Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 638-646.
    6. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    7. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    8. Isabel Kaufmann Almeida & Aleska Kaufmann Almeida & Jorge Luiz Steffen & Teodorico Alves Sobrinho, 2016. "Model for Estimating the Time of Concentration in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4083-4096, September.
    9. Jiazheng Lu & Jun Guo & Li Yang & Xunjian Xu, 2017. "Research of reservoir watershed fine zoning and flood forecasting method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1291-1306, December.
    10. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    11. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    12. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    13. Dedi Liu & Shenglian Guo & Pan Liu & Hui Zou & Xingjun Hong, 2019. "Rational Function Method for Allocating Water Resources in the Coupled Natural-Human Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 57-73, January.
    14. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    15. Yizhong Chen & Li He & Hongwei Lu & Jing Li & Lixia Ren, 2018. "Planning for Regional Water System Sustainability Through Water Resources Security Assessment Under Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3135-3153, July.
    16. Wang, Chao & Sun, Qiyuan & Wang, Peifang & Hou, Jun & Qu, Aiyu, 2013. "An optimization approach to runoff regulation for potential estuarine eutrophication control: Model development and a case study of Yangtze Estuary, China," Ecological Modelling, Elsevier, vol. 251(C), pages 199-210.
    17. Meraj Sohrabi & Zeynab Banoo Ahani Amineh & Mohammad Hossein Niksokhan & Hossein Zanjanian, 2023. "A framework for optimal water allocation considering water value, strategic management and conflict resolution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1582-1613, February.
    18. Mukand Babel & Nisuchcha Maporn & Victor Shinde, 2014. "Incorporating Future Climatic and Socioeconomic Variables in Water Demand Forecasting: A Case Study in Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2049-2062, May.
    19. Vinit Sehgal & Rajeev Sahay & Chandranath Chatterjee, 2014. "Effect of Utilization of Discrete Wavelet Components on Flood Forecasting Performance of Wavelet Based ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1733-1749, April.
    20. Li Pan & Xudong Chen & Lu Zhao & Anran Xiao, 2019. "Does Information Asymmetry Impact Sub-Regions’ Cooperation of Regional Water Resource Allocation?," IJERPH, MDPI, vol. 16(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:12:d:10.1007_s11269-018-2024-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.