IDEAS home Printed from https://ideas.repec.org/r/spr/testjl/v18y2009i3p529-545.html
   My bibliography  Save this item

Beta autoregressive moving average models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Andréa V. Rocha & Francisco Cribari-Neto, 2017. "Erratum to: Beta autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 451-459, June.
  2. Cribari-Neto, Francisco & Scher, Vinícius T. & Bayer, Fábio M., 2023. "Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy," International Journal of Forecasting, Elsevier, vol. 39(1), pages 98-109.
  3. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
  4. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
  5. Palm, Bruna G. & Bayer, Fábio M. & Cintra, Renato J., 2022. "2-D Rayleigh autoregressive moving average model for SAR image modeling," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
  6. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
  7. Abdelhakim Aknouche & Stefanos Dimitrakopoulos, 2023. "Autoregressive conditional proportion: A multiplicative‐error model for (0,1)‐valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 393-417, July.
  8. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
  9. Guillermo Ferreira & Jorge Figueroa-Zúñiga & Mário Castro, 2015. "Partially linear beta regression model with autoregressive errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 752-775, December.
  10. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
  11. Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
  12. Francisco JA Cysneiros, 2018. "Symmetric Regression Model for Temporal Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(2), pages 44-45, February.
  13. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
  14. Denis Surzhko, 2017. "Bayesian Approach to PD Calibration and Stress-testing in Low Default Portfolios," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(2), pages 1-6.
  15. Vinicius Q. S. Maior & Francisco José A. Cysneiros, 2018. "SYMARMA: a new dynamic model for temporal data on conditional symmetric distribution," Statistical Papers, Springer, vol. 59(1), pages 75-97, March.
  16. Tingguo Zheng & Han Xiao & Rong Chen, 2021. "Generalized Autoregressive Moving Average Models with GARCH Errors," Papers 2105.05532, arXiv.org.
  17. Scher, Vinícius T. & Cribari-Neto, Francisco & Bayer, Fábio M., 2024. "Generalized βARMA model for double bounded time series forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 721-734.
  18. Tingguo Zheng & Han Xiao & Rong Chen, 2022. "Generalized autoregressive moving average models with GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 125-146, January.
  19. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
  20. Melchior, Cristiane & Zanini, Roselaine Ruviaro & Guerra, Renata Rojas & Rockenbach, Dinei A., 2021. "Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches," International Journal of Forecasting, Elsevier, vol. 37(2), pages 825-837.
  21. Abraão D. C. Nascimento & Maria C. S. Lima & Hassan Bakouch & Najla Qarmalah, 2023. "Scaled Muth–ARMA Process Applied to Finance Market," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
  22. Moizes Melo & Airlane Alencar, 2020. "Conway–Maxwell–Poisson Autoregressive Moving Average Model for Equidispersed, Underdispersed, and Overdispersed Count Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 830-857, November.
  23. Andréa Rocha & Alexandre Simas, 2011. "Influence diagnostics in a general class of beta regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 95-119, May.
  24. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
  25. Maia, Gisele de Oliveira & Barreto-Souza, Wagner & Bastos, Fernando de Souza & Ombao, Hernando, 2021. "Semiparametric time series models driven by latent factor," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1463-1479.
  26. Víctor Leiva & Helton Saulo & Rubens Souza & Robert G. Aykroyd & Roberto Vila, 2021. "A new BISARMA time series model for forecasting mortality using weather and particulate matter data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 346-364, March.
  27. Guilherme Pumi & Taiane Schaedler Prass & Rafael Rigão Souza, 2021. "A dynamic model for double‐bounded time series with chaotic‐driven conditional averages," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 68-86, March.
  28. Božidar Popović & Saralees Nadarajah & Miroslav Ristić, 2013. "A new non-linear AR(1) time series model having approximate beta marginals," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 71-92, January.
  29. repec:jss:jstsof:34:i02 is not listed on IDEAS
  30. Willams B. F. da Silva & Pedro M. Almeida‐Junior & Abraão D. C. Nascimento, 2023. "Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
  31. Billio Monica & Casarin Roberto, 2011. "Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-32, September.
  32. Cepeda-Cuervo Edilberto & Garrido Liliana, 2015. "Bayesian beta regression models with joint mean and dispersion modeling," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 49-58, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.