IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v171y2022ics0167947322000330.html
   My bibliography  Save this article

2-D Rayleigh autoregressive moving average model for SAR image modeling

Author

Listed:
  • Palm, Bruna G.
  • Bayer, Fábio M.
  • Cintra, Renato J.

Abstract

Two-dimensional (2-D) autoregressive moving average (ARMA) models are commonly applied to describe real-world image data, usually assuming Gaussian or symmetric noise. However, real-world data often present non-Gaussian signals, with asymmetrical distributions and strictly positive values. In particular, SAR images are known to be well characterized by the Rayleigh distribution. In this context, the ARMA model tailored for 2-D Rayleigh-distributed data is introduced—the 2-D RARMA model. The 2-D RARMA model is derived and conditional likelihood inferences are discussed. The proposed model was submitted to extensive Monte Carlo simulations to evaluate the performance of the conditional maximum likelihood estimators. Moreover, in the context of SAR image processing, two comprehensive numerical experiments were performed comparing anomaly detection and image modeling results of the proposed model with traditional 2-D ARMA models and competing methods in the literature.

Suggested Citation

  • Palm, Bruna G. & Bayer, Fábio M. & Cintra, Renato J., 2022. "2-D Rayleigh autoregressive moving average model for SAR image modeling," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:csdana:v:171:y:2022:i:c:s0167947322000330
    DOI: 10.1016/j.csda.2022.107453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322000330
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin M.A. & Rigby R.A. & Stasinopoulos D.M., 2003. "Generalized Autoregressive Moving Average Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 214-223, January.
    2. Ella R Rothermel & Matthew T Balazik & Jessica E Best & Matthew W Breece & Dewayne A Fox & Benjamin I Gahagan & Danielle E Haulsee & Amanda L Higgs & Michael H P O’Brien & Matthew J Oliver & Ian A Par, 2020. "Comparative migration ecology of striped bass and Atlantic sturgeon in the US Southern mid-Atlantic bight flyway," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-24, June.
    3. Andréa Rocha & Francisco Cribari-Neto, 2009. "Beta autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 529-545, November.
    4. Vinícius T. Scher & Francisco Cribari‐Neto & Guilherme Pumi & Fábio M. Bayer, 2020. "Goodness‐of‐fit tests for βARMA hydrological time series modeling," Environmetrics, John Wiley & Sons, Ltd., vol. 31(3), May.
    5. Ojeda, Silvia & Vallejos, Ronny & Bustos, Oscar, 2010. "A new image segmentation algorithm with applications to image inpainting," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2082-2093, September.
    6. Melchior, Cristiane & Zanini, Roselaine Ruviaro & Guerra, Renata Rojas & Rockenbach, Dinei A., 2021. "Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches," International Journal of Forecasting, Elsevier, vol. 37(2), pages 825-837.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cribari-Neto, Francisco & Scher, Vinícius T. & Bayer, Fábio M., 2023. "Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy," International Journal of Forecasting, Elsevier, vol. 39(1), pages 98-109.
    2. Abraão D. C. Nascimento & Maria C. S. Lima & Hassan Bakouch & Najla Qarmalah, 2023. "Scaled Muth–ARMA Process Applied to Finance Market," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    3. Tingguo Zheng & Han Xiao & Rong Chen, 2022. "Generalized autoregressive moving average models with GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 125-146, January.
    4. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
    5. Guilherme Pumi & Taiane Schaedler Prass & Rafael Rigão Souza, 2021. "A dynamic model for double‐bounded time series with chaotic‐driven conditional averages," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 68-86, March.
    6. Vinicius Q. S. Maior & Francisco José A. Cysneiros, 2018. "SYMARMA: a new dynamic model for temporal data on conditional symmetric distribution," Statistical Papers, Springer, vol. 59(1), pages 75-97, March.
    7. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
    8. Maia, Gisele de Oliveira & Barreto-Souza, Wagner & Bastos, Fernando de Souza & Ombao, Hernando, 2021. "Semiparametric time series models driven by latent factor," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1463-1479.
    9. Scher, Vinícius T. & Cribari-Neto, Francisco & Bayer, Fábio M., 2024. "Generalized βARMA model for double bounded time series forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 721-734.
    10. Moizes Melo & Airlane Alencar, 2020. "Conway–Maxwell–Poisson Autoregressive Moving Average Model for Equidispersed, Underdispersed, and Overdispersed Count Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 830-857, November.
    11. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    12. Melchior, Cristiane & Zanini, Roselaine Ruviaro & Guerra, Renata Rojas & Rockenbach, Dinei A., 2021. "Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches," International Journal of Forecasting, Elsevier, vol. 37(2), pages 825-837.
    13. Tingguo Zheng & Han Xiao & Rong Chen, 2021. "Generalized Autoregressive Moving Average Models with GARCH Errors," Papers 2105.05532, arXiv.org.
    14. Abdelhakim Aknouche & Stefanos Dimitrakopoulos, 2023. "Autoregressive conditional proportion: A multiplicative‐error model for (0,1)‐valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 393-417, July.
    15. Víctor Leiva & Helton Saulo & Rubens Souza & Robert G. Aykroyd & Roberto Vila, 2021. "A new BISARMA time series model for forecasting mortality using weather and particulate matter data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 346-364, March.
    16. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    17. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
    18. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    19. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
    20. Willams B. F. da Silva & Pedro M. Almeida‐Junior & Abraão D. C. Nascimento, 2023. "Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:171:y:2022:i:c:s0167947322000330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.