Partially linear beta regression model with autoregressive errors
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-015-0433-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sungduk Kim & Ming-Hui Chen & Dipak K. Dey, 2008. "Flexible generalized t-link models for binary response data," Biometrika, Biometrika Trust, vol. 95(1), pages 93-106.
- Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
- J. Vermaak & C. Andrieu & A. Doucet & S. J. Godsill, 2004. "Reversible Jump Markov Chain Monte Carlo Strategies for Bayesian Model Selection in Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 785-809, November.
- Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
- Figueroa-Zúñiga, Jorge I. & Arellano-Valle, Reinaldo B. & Ferrari, Silvia L.P., 2013. "Mixed beta regression: A Bayesian perspective," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 137-147.
- Andréa Rocha & Francisco Cribari-Neto, 2009. "Beta autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 529-545, November.
- Guillermo Ferreira & Luis M. Castro & Victor H. Lachos & Ronaldo Dias, 2013. "Bayesian modeling of autoregressive partial linear models with scale mixture of normal errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1796-1816, August.
- Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
- Billio Monica & Casarin Roberto, 2011. "Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-32, September.
- Patricia Espinheira & Silvia Ferrari & Francisco Cribari-Neto, 2008. "On beta regression residuals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(4), pages 407-419.
- Paolino, Philip, 2001. "Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Variables," Political Analysis, Cambridge University Press, vol. 9(4), pages 325-346, January.
- da-Silva, C.Q. & Migon, H.S. & Correia, L.T., 2011. "Dynamic Bayesian beta models," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2074-2089, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
- Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
- Ceren Eda Can & Gul Ergun & Refik Soyer, 2022. "Bayesian Analysis of Proportions via a Hidden Markov Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3121-3139, December.
- Cepeda-Cuervo Edilberto & Garrido Liliana, 2015. "Bayesian beta regression models with joint mean and dispersion modeling," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 49-58, March.
- Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
- Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
- Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Jay Verkuilen & Michael Smithson, 2012. "Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 82-113, February.
- Francisco Cribari-Neto & Sadraque E.F. Lucena, 2015. "Nonnested hypothesis testing in the class of varying dispersion beta regressions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 967-985, May.
- Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
- Souza, M.A.O. & Migon, H.S. & Pereira, J.B.M., 2018. "Extended dynamic generalized linear models: The two-parameter exponential family," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 164-179.
- Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.
- Cribari-Neto, Francisco & Scher, Vinícius T. & Bayer, Fábio M., 2023. "Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy," International Journal of Forecasting, Elsevier, vol. 39(1), pages 98-109.
- Abdelhakim Aknouche & Stefanos Dimitrakopoulos, 2023. "Autoregressive conditional proportion: A multiplicative‐error model for (0,1)‐valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 393-417, July.
- Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
- Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012.
"Combination schemes for turning point predictions,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combination Schemes for Turning Point Predictions," Tinbergen Institute Discussion Papers 11-123/4, Tinbergen Institute.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Combination schemes for turning point predictions," Working Papers 2012_15, Department of Economics, University of Venice "Ca' Foscari".
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Combination schemes for turning point predictions," Working Paper 2012/04, Norges Bank.
- Claus Michelsen & Peter Boenisch & Benny Geys, 2014. "(De)Centralization and voter turnout: theory and evidence from German municipalities," Public Choice, Springer, vol. 159(3), pages 469-483, June.
- Espinheira, Patricia L. & Ferrari, Silvia L.P. & Cribari-Neto, Francisco, 2008. "Influence diagnostics in beta regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4417-4431, May.
- Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
- S. Balia, 2011. "Survival expectations, subjective health and smoking: evidence from European countries," Health, Econometrics and Data Group (HEDG) Working Papers 11/30, HEDG, c/o Department of Economics, University of York.
More about this item
Keywords
Autoregressive processes; Bayesian modeling; Beta regression; Partially linear model; 62F15; 62J05;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:24:y:2015:i:4:p:752-775. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.