Generalized βARMA model for double bounded time series forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2023.05.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Guilherme Pumi & Taiane Schaedler Prass & Rafael Rigão Souza, 2021. "A dynamic model for double‐bounded time series with chaotic‐driven conditional averages," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 68-86, March.
- Andréa V. Rocha & Francisco Cribari-Neto, 2017. "Erratum to: Beta autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 451-459, June.
- Cribari-Neto, Francisco & Scher, Vinícius T. & Bayer, Fábio M., 2023. "Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy," International Journal of Forecasting, Elsevier, vol. 39(1), pages 98-109.
- Hsu, Wu-ron & Murphy, Allan H., 1986. "The attributes diagram A geometrical framework for assessing the quality of probability forecasts," International Journal of Forecasting, Elsevier, vol. 2(3), pages 285-293.
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Ralph D. Snyder & J. Keith Ord & Anne B. Koehler & Keith R. McLaren & Adrian Beaumont, 2015. "Forecasting Compositional Time Series: A State Space Approach," Monash Econometrics and Business Statistics Working Papers 11/15, Monash University, Department of Econometrics and Business Statistics.
- Andréa Rocha & Francisco Cribari-Neto, 2009. "Beta autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 529-545, November.
- Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
- Melchior, Cristiane & Zanini, Roselaine Ruviaro & Guerra, Renata Rojas & Rockenbach, Dinei A., 2021. "Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches," International Journal of Forecasting, Elsevier, vol. 37(2), pages 825-837.
- Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
- Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
- Cribari-Neto, Francisco & Zeileis, Achim, 2010. "Beta Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i02).
- Terence Mills, 2010. "Forecasting compositional time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(4), pages 673-690, June.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cribari-Neto, Francisco & Scher, Vinícius T. & Bayer, Fábio M., 2023. "Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy," International Journal of Forecasting, Elsevier, vol. 39(1), pages 98-109.
- Cepeda-Cuervo Edilberto & Garrido Liliana, 2015. "Bayesian beta regression models with joint mean and dispersion modeling," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 49-58, March.
- Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
- Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
- Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012.
"Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
- Bettina Grün & Ioannis Kosmidis & Achim Zeileis, 2011. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Working Papers 2011-22, Faculty of Economics and Statistics, Universität Innsbruck.
- Zhang, Dengjun & Xie, Yifan, 2022. "Customer environmental concerns and profit margin: Evidence from manufacturing firms," Journal of Economics and Business, Elsevier, vol. 120(C).
- Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
- Yukako Sado-Inamura & Kensuke Fukushi, 2018. "Considering Water Quality of Urban Rivers from the Perspectives of Unpleasant Odor," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
- Li-Chu Chien, 2013. "Multiple deletion diagnostics in beta regression models," Computational Statistics, Springer, vol. 28(4), pages 1639-1661, August.
- Dengjun Zhang, 2022. "Capacity utilization under credit constraints: A firm‐level study of Latin American manufacturing," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 1367-1386, January.
- Jodrá, P. & Jiménez-Gamero, M.D., 2016. "A note on the Log-Lindley distribution," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 189-194.
- López Prol, Javier & Zilberman, David, 2023. "No alarms and no surprises: Dynamics of renewable energy curtailment in California," Energy Economics, Elsevier, vol. 126(C).
- Abbasiharofteh, Milad & Kogler, Dieter F. & Lengyel, Balázs, 2023.
"Atypical combinations of technologies in regional co-inventor networks,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 52(10), pages 1-1.
- Abbasiharofteh, Milad & Kogler, Dieter F. & Lengyel, Balázs, 2023. "Atypical combinations of technologies in regional co-inventor networks," Research Policy, Elsevier, vol. 52(10).
- Milad Abbasiharofteh & Dieter F. Kogler & Balazs Lengyel, 2020. "Atypical combination of technologies in regional co-inventor networks," Papers in Evolutionary Economic Geography (PEEG) 2055, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Nov 2020.
- Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
- Juan David Vega Baquero & Miguel Santolino, 2021. ""Too big to fail? An analysis of the Colombian banking system through compositional data"," IREA Working Papers 202111, University of Barcelona, Research Institute of Applied Economics, revised Apr 2021.
- Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
- Barbiero, Tommaso & Grillenzoni, Carlo, 2019. "A statistical analysis of the energy effectiveness of building refurbishment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
- Steven B Kim & Dong Sub Kim & Xiaoming Mo, 2021. "An image segmentation technique with statistical strategies for pesticide efficacy assessment," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-12, March.
- Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
More about this item
Keywords
Beta distribution; βARMA model; Forecasting; Stored hydroelectric energy; Variable precision; Useful volume;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:2:p:721-734. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.