IDEAS home Printed from https://ideas.repec.org/r/spr/joptap/v102y1999i3d10.1023_a1022641805263.html
   My bibliography  Save this item

Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
  2. Michelle Bandarra & Vincent Guigues, 2021. "Single cut and multicut stochastic dual dynamic programming with cut selection for multistage stochastic linear programs: convergence proof and numerical experiments," Computational Management Science, Springer, vol. 18(2), pages 125-148, June.
  3. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
  4. Haoxiang Yang & Harsha Nagarajan, 2022. "Optimal Power Flow in Distribution Networks Under N – 1 Disruptions: A Multistage Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 690-709, March.
  5. K. Linowsky & A. B. Philpott, 2005. "On the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic Programs," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 349-366, May.
  6. de Queiroz, Anderson Rodrigo & Marangon Lima, Luana M. & Marangon Lima, José W. & da Silva, Benedito C. & Scianni, Luciana A., 2016. "Climate change impacts in the energy supply of the Brazilian hydro-dominant power system," Renewable Energy, Elsevier, vol. 99(C), pages 379-389.
  7. Juliana M. Nascimento & Warren B. Powell, 2009. "An Optimal Approximate Dynamic Programming Algorithm for the Lagged Asset Acquisition Problem," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 210-237, February.
  8. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
  9. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
  10. Guan, Z. & Philpott, A.B., 2011. "A multistage stochastic programming model for the New Zealand dairy industry," International Journal of Production Economics, Elsevier, vol. 134(2), pages 289-299, December.
  11. P. Girardeau & V. Leclere & A. B. Philpott, 2015. "On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 130-145, February.
  12. Arnab Bhattacharya & Jeffrey P. Kharoufeh & Bo Zeng, 2023. "A Nonconvex Regularization Scheme for the Stochastic Dual Dynamic Programming Algorithm," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1161-1178, September.
  13. Murwan Siddig & Yongjia Song, 2022. "Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse," Computational Optimization and Applications, Springer, vol. 81(1), pages 201-250, January.
  14. Guigues, Vincent & Sagastizábal, Claudia, 2012. "The value of rolling-horizon policies for risk-averse hydro-thermal planning," European Journal of Operational Research, Elsevier, vol. 217(1), pages 129-140.
  15. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
  16. Michael Z. Spivey & Warren B. Powell, 2004. "The Dynamic Assignment Problem," Transportation Science, INFORMS, vol. 38(4), pages 399-419, November.
  17. Tanrisever, Fehmi & Morrice, Douglas & Morton, David, 2012. "Managing capacity flexibility in make-to-order production environments," European Journal of Operational Research, Elsevier, vol. 216(2), pages 334-345.
  18. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
  19. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
  20. Hua, Yikang & Zhao, Dongfang & Wang, Xin & Li, Xiaopeng, 2019. "Joint infrastructure planning and fleet management for one-way electric car sharing under time-varying uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 185-206.
  21. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
  22. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
  23. Pedro Borges, 2022. "Cut-sharing across trees and efficient sequential sampling for SDDP with uncertainty in the RHS," Computational Optimization and Applications, Springer, vol. 82(3), pages 617-647, July.
  24. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
  25. Martin Šmíd & Václav Kozmík, 2024. "Approximation of multistage stochastic programming problems by smoothed quantization," Review of Managerial Science, Springer, vol. 18(7), pages 2079-2114, July.
  26. Pierre Carpentier & Guy Cohen & Anes Dallagi, 2013. "Particle methods for stochastic optimal control problems," Computational Optimization and Applications, Springer, vol. 56(3), pages 635-674, December.
  27. Huseyin Topaloglu & Warren B. Powell, 2006. "Dynamic-Programming Approximations for Stochastic Time-Staged Integer Multicommodity-Flow Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 31-42, February.
  28. Nils Löhndorf & David Wozabal & Stefan Minner, 2013. "Optimizing Trading Decisions for Hydro Storage Systems Using Approximate Dual Dynamic Programming," Operations Research, INFORMS, vol. 61(4), pages 810-823, August.
  29. Warren Powell & Andrzej Ruszczyński & Huseyin Topaloglu, 2004. "Learning Algorithms for Separable Approximations of Discrete Stochastic Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 814-836, November.
  30. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
  31. Vitor L. de Matos & David P. Morton & Erlon C. Finardi, 2017. "Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling," Annals of Operations Research, Springer, vol. 253(2), pages 713-731, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.