IDEAS home Printed from https://ideas.repec.org/r/rff/dpaper/dp-07-11.html
   My bibliography  Save this item

Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Zhong Xiang, 2012. "Competitiveness and Leakage Concerns and Border Carbon Adjustments," International Review of Environmental and Resource Economics, now publishers, vol. 6(3), pages 225-287, December.
  2. Leibowicz, Benjamin D., 2018. "Welfare improvement windows for innovation policy," Research Policy, Elsevier, vol. 47(2), pages 390-398.
  3. Campiglio, Emanuele & Dietz, Simon & Venmans, Frank, 2022. "Optimal climate policy as if the transition matters," LSE Research Online Documents on Economics 117610, London School of Economics and Political Science, LSE Library.
  4. Léo Coppens & Simon Dietz & Frank Venmans, 2024. "Optimal Climate Policy under Exogenous and Endogenous Technical Change: Making Sense of the Different Approaches," CESifo Working Paper Series 11059, CESifo.
  5. Gregor Semieniuk, 2016. "Fossil energy in economic growth: A study of the energy direction of technical change, 1950-2012," SPRU Working Paper Series 2016-11, SPRU - Science Policy Research Unit, University of Sussex Business School.
  6. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
  7. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
  8. Duan, Yunlong & Liu, Shuling & Cheng, Hao & Chin, Tachia & Luo, Xuan, 2021. "The moderating effect of absorptive capacity on transnational knowledge spillover and the innovation quality of high-tech industries in host countries: Evidence from the Chinese manufacturing industry," International Journal of Production Economics, Elsevier, vol. 233(C).
  9. Limei Ma & Qianying Wang & Dan Shi & Qinglong Shao, 2023. "Spatiotemporal patterns and determinants of renewable energy innovation: Evidence from a province-level analysis in China," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
  10. Lucas Bretschger & Matthias Leuthard & Alena Miftakhova, 2024. "Boosting Sluggish Climate Policy: Endogenous Substitution, Learning, and Energy Efficiency Improvements," CER-ETH Economics working paper series 24/391, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  11. Baker, Erin & Solak, Senay, 2011. "Climate change and optimal energy technology R&D policy," European Journal of Operational Research, Elsevier, vol. 213(2), pages 442-454, September.
  12. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
  13. Zhang, Dongyang, 2022. "Green financial system regulation shock and greenwashing behaviors: Evidence from Chinese firms," Energy Economics, Elsevier, vol. 111(C).
  14. Kim, Kyunam & Kim, Yeonbae, 2015. "Role of policy in innovation and international trade of renewable energy technology: Empirical study of solar PV and wind power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 717-727.
  15. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
  16. Giuseppe Travaglini, 2010. "The dynamic effects of technological and non technological shocks in the energy sector: a case study for Italy," Working Papers 1001, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2010.
  17. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
  18. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
  19. Lint Barrage, 2019. "The Nobel Memorial Prize for William D. Nordhaus," Scandinavian Journal of Economics, Wiley Blackwell, vol. 121(3), pages 884-924, July.
  20. Parry, Ian, 2015. "Designing Fiscal Policy to Address the External Costs of Energy," International Review of Environmental and Resource Economics, now publishers, vol. 8(1), pages 1-56, May.
  21. Turnbull, D. & Glaser, A. & Goldston, R.J., 2015. "Investigating the value of fusion energy using the Global Change Assessment Model," Energy Economics, Elsevier, vol. 51(C), pages 346-353.
  22. Kurt Kratena & Michael Wüger, 2012. "Technological Change and Energy Demand in Europe," WIFO Working Papers 427, WIFO.
  23. Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013. "Statistical Basis for Predicting Technological Progress," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
  24. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2016. "Looking the wrong way: Bias, renewable electricity, and energy modelling in the United States," Energy, Elsevier, vol. 94(C), pages 533-541.
  25. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
  26. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
  27. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  28. Wand, Robert & Leuthold, Florian, 2011. "Feed-in tariffs for photovoltaics: Learning by doing in Germany?," Applied Energy, Elsevier, vol. 88(12), pages 4387-4399.
  29. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
  30. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
  31. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
  32. Kerstin Hötte, 2021. "Skill transferability and the stability of transition pathways- A learning-based explanation for patterns of diffusion," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 959-993, July.
  33. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
  34. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
  35. Joltreau, Eugénie & Sommerfeld, Katrin, 2016. "Why does emissions trading under the EU ETS not affect firms' competitiveness? Empirical findings from the literature," ZEW Discussion Papers 16-062, ZEW - Leibniz Centre for European Economic Research.
  36. repec:spo:wpmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
  37. Hu, Guoqiang & Wang, Xiaoqi & Wang, Yu, 2021. "Can the green credit policy stimulate green innovation in heavily polluting enterprises? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 98(C).
  38. Hui Fang & Qixin Huo & Kaouakib Hatim, 2023. "Can Digital Services Trade Liberalization Improve the Quality of Green Innovation of Enterprises? Evidence from China," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
  39. Janine De Fence & Nick Hanley & Karen Turner, 2009. "Do Productivity Improvements Move Us Along the Environmental Kuznets Curve?," Working Papers 0908, University of Strathclyde Business School, Department of Economics.
  40. Du, Mengfan & Zhang, Yue-Jun, 2023. "The impact of producer services agglomeration on green economic development: Evidence from 278 Chinese cities," Energy Economics, Elsevier, vol. 124(C).
  41. Luca Spinesi, 2022. "The Environmental Tax: Effects on Inequality and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(3), pages 529-572, July.
  42. Turner, Karen & Hanley, Nick, 2011. "Energy efficiency, rebound effects and the environmental Kuznets Curve," Energy Economics, Elsevier, vol. 33(5), pages 709-720, September.
  43. Lee, Hwarang & Lee, Jeongeun & Koo, Yoonmo, 2022. "Economic impacts of carbon capture and storage on the steel industry–A hybrid energy system model incorporating technological change," Applied Energy, Elsevier, vol. 317(C).
  44. Albrecht, Johan & Laleman, Ruben & Vulsteke, Elien, 2015. "Balancing demand-pull and supply-push measures to support renewable electricity in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 267-277.
  45. Coppens, Léo & Dietz, Simon & Venmans, Frank, 2024. "Optimal climate policy under exogenous and endogenous technical change: making sense of the different approaches," LSE Research Online Documents on Economics 124548, London School of Economics and Political Science, LSE Library.
  46. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2012. "Brown Sunsets and Green Dawns in the Industrial Sector: Environmental Innovations, Firm Behavior and the European Emission Trading," Climate Change and Sustainable Development 121701, Fondazione Eni Enrico Mattei (FEEM).
  47. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
  48. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
  49. Claudio Baccianti & Andreas Löschel, 2014. "The Role of Product and Process Innovation in CGE Models of Environmental Policy. WWWforEurope Working Paper No. 68," WIFO Studies, WIFO, number 47501, April.
  50. Vandyck, Toon & Saveyn, Bert & Keramidas, Kimon & Kitous, Alban & Vrontisi, Zoi, 2016. "A global stocktake of the Paris pledges: implications for energy systems and economy," Conference papers 332704, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  51. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
  52. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
  53. Pugh, Graham & Clarke, Leon & Marlay, Robert & Kyle, Page & Wise, Marshall & McJeon, Haewon & Chan, Gabriel, 2011. "Energy R&D portfolio analysis based on climate change mitigation," Energy Economics, Elsevier, vol. 33(4), pages 634-643, July.
  54. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
  55. Chen Feng & Beibei Shi & Rong Kang, 2017. "Does Environmental Policy Reduce Enterprise Innovation?—Evidence from China," Sustainability, MDPI, vol. 9(6), pages 1-24, May.
  56. Tobias Schmidt & Sandeep Dabur, 2014. "Explaining the diffusion of biogas in India: a new functional approach considering national borders and technology transfer," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(2), pages 171-199, April.
  57. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
  58. Schmidt, Tobias S. & Schneider, Malte & Hoffmann, Volker H., 2012. "Decarbonising the power sector via technological change – differing contributions from heterogeneous firms," Energy Policy, Elsevier, vol. 43(C), pages 466-479.
  59. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
  60. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
  61. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
  62. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
  63. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
  64. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
  65. Shi, Beibei & Feng, Chen & Qiu, Meng & Ekeland, Anders, 2018. "Innovation suppression and migration effect: The unintentional consequences of environmental regulation," China Economic Review, Elsevier, vol. 49(C), pages 1-23.
  66. Geddes, Anna & Schmidt, Tobias S. & Steffen, Bjarne, 2018. "The multiple roles of state investment banks in low-carbon energy finance: An analysis of Australia, the UK and Germany," Energy Policy, Elsevier, vol. 115(C), pages 158-170.
  67. Lööf, Hans & Perez, Luis & Baum, Christopher F, 2018. "Directed Technical Change in Clean Energy: Evidence from the Solar Industry," Working Paper Series in Economics and Institutions of Innovation 470, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
  68. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
  69. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
  70. Jiang, Hong-Dian & Dong, Kangyin & Qing, Jing & Teng, Qiang, 2023. "The role of technical change in low-carbon transformation and crises in the electricity market: A CGE analysis with R&D investment," Energy Economics, Elsevier, vol. 125(C).
  71. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
  72. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
  73. Yao, Peng & Wang, Yutong & Liu, Jianxu, 2023. "Can water pollution control influence employment adjustment in enterprises?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 384-397.
  74. Bishwa Koirala & Alok Bohara & Hui Li, 2013. "Effects of energy-efficiency building codes in the energy savings and emissions of carbon dioxide," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(3), pages 271-290, July.
  75. de Freitas, Luciano Charlita & Kaneko, Shinji, 2012. "Is there a causal relation between ethanol innovation and the market characteristics of fuels in Brazil?," Ecological Economics, Elsevier, vol. 74(C), pages 161-168.
  76. Sansi Yang & C. Richard Shumway, 2020. "Knowledge accumulation in US agriculture: research and learning by doing," Journal of Productivity Analysis, Springer, vol. 54(2), pages 87-105, December.
  77. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
  78. Giulio Cainelli & Massimiliano Mazzanti & Simone Borghesi, 2012. "The European Emission Trading Scheme and environmental innovation diffusion: Empirical analyses using Italian CIS data," Working Papers 201201, University of Ferrara, Department of Economics.
  79. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
  80. Joshua S. Gans, 2012. "Innovation and Climate Change Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(4), pages 125-145, November.
  81. Sang Jin Choi & Dong Gu Choi & Paul Friley & Hyunkeong Kim & Sang Yong Park, 2017. "Quantitative Analysis on the Energy and Environmental Impact of the Korean National Energy R&D Roadmap a Using Bottom-Up Energy System Model," Sustainability, MDPI, vol. 9(4), pages 1-20, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.